Package 'xrf'

December 5, 2025

Title eXtreme RuleFit

Version 0.3.0

Description An implementation of the RuleFit algorithm as described in Friedman & Popescu (2008) <doi:10.1214/07-AOAS148>. eXtreme Gradient Boosting ('XGBoost') is used to build rules, and 'glmnet' is used to fit a sparse linear model on the raw and rule features. The result is a model that learns similarly to a tree ensemble, while often offering improved interpretability and achieving improved scoring runtime in live applications. Several algorithms for reducing rule complexity are provided, most notably hyperrectangle de-overlapping. All algorithms scale to several million rows and support sparse representations to handle tens of thousands of dimensions.

License MIT + file LICENSE

URL https://github.com/holub008/xrf

 $BugReports \ \hbox{https://github.com/holub008/xrf/issues}$

Depends R (>= 4.3.0)

Imports cli, dplyr, fuzzyjoin, glmnet (>= 3.0), Matrix, methods, rlang, xgboost (>= 3.1.2.1)

Suggests covr, testthat (>= 3.0.0)

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.3.3

NeedsCompilation no

Author Karl Holub [aut, cre]

Maintainer Karl Holub <karljholub@gmail.com>

Repository CRAN

Date/Publication 2025-12-04 23:30:02 UTC

2 coef.xrf

Contents

coef.xrf																	
model.matrix.xrf																	
predict.xrf																	
print.xrf																	
summary.xrf																	
xrf																	
xrf.formula																	

coef.xrf

Index

 $Produce\ rules\ \&\ coefficients\ for\ the\ RuleFit\ model$

Description

Produce rules & coefficients for the RuleFit model

Usage

```
## S3 method for class 'xrf'
coef(object, lambda = "lambda.min", ...)
```

Arguments

```
object an object of class "xrf"

lambda the lasso penalty parameter to be applied as in 'glmnet'

... ignored arguments
```

model.matrix.xrf 3

model.matrix.xrf

Generate the design matrix from an eXtreme RuleFit model

Description

Generate the design matrix from an eXtreme RuleFit model

Usage

```
## S3 method for class 'xrf'
model.matrix(object, data, sparse = TRUE, ...)
```

Arguments

```
object an object of class "xrf"

data data to generate design matrix from

sparse a logical indicating whether a sparse design matrix should be used

ignored arguments
```

Examples

predict.xrf

Draw predictions from a RuleFit xrf model

Description

Draw predictions from a RuleFit xrf model

Usage

```
## S3 method for class 'xrf'
predict(
  object,
  newdata,
  sparse = TRUE,
  lambda = "lambda.min",
  type = "response",
  ...
)
```

print.xrf

Arguments

object an object of class "xrf"

newdata data to predict on

sparse a logical indicating whether a sparse design matrix should be used

lambda the lasso penalty parameter to be applied

type the type of predicted value produced

... ignored arguments

Examples

print.xrf

Print an eXtreme RuleFit model

Description

Print an eXtreme RuleFit model

Usage

```
## S3 method for class 'xrf' print(x, ...)
```

Arguments

```
x an object of class "xrf"
... ignored arguments
```

summary.xrf 5

summary.xrf

Summarize an eXtreme RuleFit model

Description

Summarize an eXtreme RuleFit model

Usage

```
## S3 method for class 'xrf'
summary(object, ...)
```

Arguments

```
object an object of class "xrf"
... ignored arguments
```

Examples

xrf

Fit an eXtreme RuleFit model

Description

S3 method for building an "eXtreme RuleFit" model. See xrf.formula for preferred entry point

Usage

```
xrf(object, ...)
```

Arguments

```
object an object describing the model to be fit ... additional arguments
```

6 xrf.formula

xrf.formula

Fit an eXtreme RuleFit model

Description

See Friedman & Popescu (2008) for a description of the general RuleFit algorithm. This method uses XGBoost to fit a tree ensemble, extracts a ruleset as the conjunction of tree traversals, and fits a sparse linear model to the resulting feature set (including the original feature set) using glmnet.

Usage

```
## S3 method for class 'formula'
xrf(
  object,
  data,
  family,
  xgb_control = list(nrounds = 100, max_depth = 3),
  glm_control = list(type.measure = "deviance", nfolds = 5),
  sparse = TRUE,
  prefit_xgb = NULL,
  deoverlap = FALSE,
  ...
)
```

Arguments

object	a formula prescribing features to use in the model. transformation of the response variable is not supported. when using transformations on the input features (not suggested in general) it is suggested to set sparse=F
data	a data frame with columns corresponding to the formula
family	the family of the fitted model. one of 'gaussian', 'binomial', 'multinomial'
xgb_control	a list of parameters for xgboost. must supply an nrounds argument
glm_control	a list of parameters for the glmnet fit. must supply a type.measure and nfolds arguments (for the lambda $cv)$
sparse	whether a sparse design matrix should be used
prefit_xgb	an xgboost model (of class xgb.Booster) to be used instead of the model that xrf would normally fit
deoverlap	if true, the tree derived rules are deoverlapped, in that the deoverlapped rule set contains no overlapped rules
	ignored arguments

Details

In November 2025, the new version of **xgboost** (3.1.2.1) introduced significant breaking changes. This version of **xrf** can reproduce predictions from older versions of **xgboost**. However, there are likely to be differences in **xrf** model fits between old and new versions of **xgboost**.

xrf.formula 7

References

Friedman, J. H., & Popescu, B. E. (2008). Predictive learning via rule ensembles. *The Annals of Applied Statistics*, 2(3), 916-954.

Index

```
coef.xrf, 2
model.matrix.xrf, 3
predict.xrf, 3
print.xrf, 4
summary.xrf, 5
xrf, 5
xrf, 5
xrf, formula, 5, 6
```