## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(scDECO) ## ----------------------------------------------------------------------------- n <- 2500 x.use <- rnorm(n) w.use <- runif(n,-1,1) marginals.use <- c("ZINB", "ZIGA") # simulate data y.use <- scdeco.sim.cop(marginals=marginals.use, x=x.use, eta1.true=c(-2, 0.8), eta2.true=c(-2, 0.8), beta1.true=c(1, 0.5), beta2.true=c(1, 1), alpha1.true=7, alpha2.true=3, tau.true=c(-0.2, .3), w=w.use) ## ----------------------------------------------------------------------------- # fit the model mcmc.out <- scdeco.cop(y=y.use, x=x.use, marginals=marginals.use, w=w.use, n.mcmc=10, burn=0, thin=1) # n.mcmc=5000, burn=1000, thin=10) ## ----------------------------------------------------------------------------- # extract estimates and confidence intervals lowerupper <- t(apply(mcmc.out, 2, quantile, c(0.025, 0.5, 0.975))) estmat <- cbind(lowerupper[,1], c(c(-2, 0.8), c(-2, 0.8), c(1, 0.5), c(1, 1), 7, 3, c(-0.2, .3)), lowerupper[,c(2,3)]) colnames(estmat) <- c("lower", "trueval", "estval", "upper") estmat