## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)

## ----include=FALSE------------------------------------------------------------
library(rix)

## ----eval = FALSE-------------------------------------------------------------
# library(rix)
# 
# rix(
#   r_ver = "4.3.1",
#   r_pkgs = c("dplyr", "ggplot2"),
#   ide = "none",
#   project_path = ".",
#   overwrite = TRUE
# )

## ----eval = FALSE-------------------------------------------------------------
# library(rix)
# 
# rix(
#   r_ver = "4.2.2",
#   r_pkgs = "shiny",
#   ide = "none",
#   project_path = ".",
#   overwrite = TRUE
# )

## ----eval = FALSE-------------------------------------------------------------
# # k-means only works with numerical variables,
# # so don't give the user the option to select
# # a categorical variable
# vars <- setdiff(names(iris), "Species")
# 
# pageWithSidebar(
#   headerPanel("Iris k-means clustering"),
#   sidebarPanel(
#     selectInput("xcol", "X Variable", vars),
#     selectInput("ycol", "Y Variable", vars, selected = vars[[2]]),
#     numericInput("clusters", "Cluster count", 3, min = 1, max = 9)
#   ),
#   mainPanel(
#     plotOutput("plot1")
#   )
# )

## ----eval = FALSE-------------------------------------------------------------
# function(input, output, session) {
#   # Combine the selected variables into a new data frame
#   selectedData <- reactive({
#     iris[, c(input$xcol, input$ycol)]
#   })
# 
#   clusters <- reactive({
#     kmeans(selectedData(), input$clusters)
#   })
# 
#   output$plot1 <- renderPlot({
#     palette(c(
#       "#E41A1C", "#377EB8", "#4DAF4A", "#984EA3",
#       "#FF7F00", "#FFFF33", "#A65628", "#F781BF", "#999999"
#     ))
# 
#     par(mar = c(5.1, 4.1, 0, 1))
#     plot(selectedData(),
#       col = clusters()$cluster,
#       pch = 20, cex = 3
#     )
#     points(clusters()$centers, pch = 4, cex = 4, lwd = 4)
#   })
# }