Package 'pleioh2g'

October 28, 2025

Type Package

Title Estimation of Pleiotropic Heritability from Genome-Wide Association Studies (GWAS) Summary Statistics

Version 0.1.0

Description Provides tools to compute unbiased pleiotropic heritability estimates of complex diseases from genome-wide association studies (GWAS) summary statistics. We estimate pleiotropic heritability from GWAS summary statistics by estimating the proportion of variance explained from an estimated genetic correlation matrix (Bulik-Sullivan et al. 2015 <doi:10.1038/ng.3406>) and employing a Monte-Carlo bias correction procedure to account for sampling noise in genetic correlation estimates.

License GPL-3

Encoding UTF-8

LazyData true

Depends R (>= 2.10)

RoxygenNote 7.3.2

Imports data.table, dplyr, stats, rlang, mvtnorm, fs, arrow, checkmate, cli, gdata, glue, purrr, tibble, vroom

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

Config/testthat/edition 3

VignetteBuilder knitr

Language en-US

NeedsCompilation no

Author Yujie Zhao [aut, cre]

Maintainer Yujie Zhao <yujiezhao@hsph.harvard.edu>

Repository CRAN

Date/Publication 2025-10-28 09:50:02 UTC

Contents

	Cal_cor_pleiotropic_h2	2
	Cal_cor_pleiotropic_h2_corrected_single	3
	Cal_cor_pleiotropic_h2_single	4
	Cal_cor_test_single	5
	Cal_rg_h2g_alltraits	5
	Cal_rg_h2g_jk_alltraits	6
	generate_proposal_sample_changea_cor	7
	h2_liability	
	h2_vector_15D	
	h2_vector_mat_15D	9
	ldsc_h2	10
	ldsc_rg	11
	make_weights	12
	merge_sumstats	13
	perform_analysis	13
	pleiotropyh2_cor_computing_single	14
	pleiotropyh2_cor_computing_single_prune	15
	pleiotropyh2_nocor_computing_single	17
	Prune_disease_selection_DTrgzscore	18
	pruning_pleioh2g_wrapper	19
	read_ld	20
	read_m	21
	read_sumstats	21
	read_wld	22
	Results_full_rg_15D	23
	Results_full_rg_array_15D	23
	Rg_mat_z_15D	24
	sumstats_munged_example_input	24
		25
Index		25

Cal_cor_pleiotropic_h2

Compute a vector of pleioh2g for all diseases before correction This function computes pleioh2g for all diseases before correction in one go.

Description

Compute a vector of pleioh2g for all diseases before correction This function computes pleioh2g for all diseases before correction in one go.

Usage

```
Cal_cor_pleiotropic_h2(rg_mat, h2g_T)
```

Arguments

rg_mat genetic correlation matrix.
h2g_T heritability vector for all diseases.

Value

pleioh2g vector

Examples

```
data(Results_full_rg_15D)
data(h2_vector_15D)
Cal_cor_pleiotropic_h2(Results_full_rg_15D,h2_vector_15D)
```

```
Cal_cor_pleiotropic_h2_corrected_single
```

Compute single pleioh2g for target disease after correction with referred disease index in the rg matrix and corrected ratio

Description

This function computes pleioh2g for the target disease after correction.

Usage

```
Cal_cor_pleiotropic_h2_corrected_single(
  rg_mat,
  h2g_T_single,
  corrected_weight_updated,
  plei_h2_idx
)
```

Arguments

Value

pleioh2g value for the target disease after correction

Examples

```
data(Results_full_rg_15D)
data(h2_vector_15D)
plei_h2_idx<-1
h2g_T_single <- h2_vector_15D[plei_h2_idx]
corrected_weight_updated <- 0.78
Cal_cor_pleiotropic_h2_corrected_single(Results_full_rg_15D,h2g_T_single, corrected_weight_updated,plei_h2_idx)</pre>
```

```
Cal_cor_pleiotropic_h2_single
```

Compute single pleioh2g for target disease before correction with referred disease index in the rg matrix

Description

This function computes pleioh2g for the target disease before correction.

Usage

```
Cal_cor_pleiotropic_h2_single(rg_mat, h2g_T_single, plei_h2_idx)
```

Arguments

rg_mat genetic correlation matrix. h2g_T_single heritability for target diseases.

plei_h2_idx index of the target disease in the rg_mat.

Value

pleioh2g value for the target disease before correction

Examples

```
data(Results_full_rg_15D)
data(h2_vector_15D)
plei_h2_idx<-1
h2g_T_single<-h2_vector_15D[plei_h2_idx]
Cal_cor_pleiotropic_h2_single(Results_full_rg_15D,h2g_T_single,plei_h2_idx)</pre>
```

Cal_cor_test_single 5

Cal_cor_test_single

Compute inversed elements for the target disease in bias correction procedure with referred disease index in the rg matrix

Description

This function inversed elements for the target disease in bias correction procedure.

Usage

```
Cal_cor_test_single(rg_mat, plei_h2_idx)
```

Arguments

```
rg_mat genetic correlation matrix.
plei_h2_idx index of the target disease in the rg_mat.
```

Value

inverse element value for the target disease used for bias correction

Examples

```
data(Results_full_rg_15D)
plei_h2_idx<-1
Cal_cor_test_single(Results_full_rg_15D,plei_h2_idx)</pre>
```

```
Cal_rg_h2g_alltraits Compute rg + h2g
```

Description

This function is used to compute rg + h2g using LDSC.

Usage

```
Cal_rg_h2g_alltraits(
    phenotype,
    munged_sumstats,
    ld_path,
    wld_path,
    sample_prev = NULL,
    population_prev = NULL)
```

Arguments

Vector of population prevalence, in the same order of input GWAS summary statistics.

Value

A named list containing LDSC-based heritability and genetic correlation estimates across all input phenotypes. The list includes the following elements:

- h2: Matrix of SNP-heritability estimates on the observed scale (rows = 1, columns = input phenotypes).
- h2Z: Matrix of corresponding heritability Z-scores.
- 1iah2: Matrix of heritability estimates on the liability scale.
- rg: Symmetric matrix of pairwise genetic correlations between traits.
- rgz: Matrix of Z-scores for the genetic correlation estimates.
- gcov: Symmetric matrix of genetic covariances between traits.

Each element corresponds to one LDSC-derived summary statistic, with trait names used as both row and column names.

```
Cal_rg_h2g_jk_alltraits genomic\text{-}block\ jackknife\ and\ compute\ rg\ +\ h2g
```

Description

This function performs genomic-block jackknife and computes rg + h2g.

Usage

```
Cal_rg_h2g_jk_alltraits(
    n_block = 200,
    hmp3,
    phenotype,
    munged_sumstats,
    ld_path,
    wld_path,
    sample_prev = NULL,
    population_prev = NULL)
```

Arguments

n_block number of jackknife blocks.

hmp3 Directory for hapmap 3 snplist.

phenotype Vector of the phenotype name

munged_sumstats

All LDSC-munged GWAS .stat.gz

ld_path Path to directory containing ld score files.

wld_path Path to directory containing weight files.

sample_prev Vector of sample prevalence, in the same order of input GWAS summary statis-

tics.

population_prev

Vector of population prevalence, in the same order of input GWAS summary

statistics.

Value

A named list containing block jackknife estimates of SNP-heritability and genetic correlation across all input phenotypes. The list includes the following elements:

- h2array: A matrix of per-block SNP-heritability estimates on the observed scale. Rows correspond to jackknife blocks, and columns correspond to input phenotypes.
- liah2array: A matrix of per-block SNP-heritability estimates on the liability scale, with the same row and column structure as h2array.
- rgarray: A three-dimensional array of pairwise genetic correlation estimates. The first two
 dimensions represent phenotype pairs (rows and columns), and the third dimension indexes
 the jackknife blocks.
- gcovarray: A three-dimensional array of pairwise genetic covariance estimates, aligned in structure with rgarray.

Each element provides per-block estimates that can be used to compute standard errors or confidence intervals via the block jackknife method.

generate_proposal_sample_changea_cor

Generate samples based on sampling covariance matrix and rg matrix for target disease

Description

This function is used to generate samples based on sampling covariance matrix and rg matrix for target disease

8 h2_liability

Usage

```
generate_proposal_sample_changea_cor(
  Results_full_rg,
  Results_full_rg_array,
  plei_h2_idx,
  ratio_a
)
```

Arguments

```
Results_full_rg
genetic correlation matrix.

Results_full_rg_array
genetic correlation jackknife-block array.

plei_h2_idx index of the target disease in the rg_mat.

ratio_a corrected ratio.
```

Value

noisy_inversed_element for bias correction

Examples

```
data(Results_full_rg_15D)
data(Results_full_rg_array_15D)
plei_h2_idx<-1
ratio_a <- 0.75
generate_proposal_sample_changea_cor(Results_full_rg_15D,
    Results_full_rg_array_15D, plei_h2_idx, ratio_a)</pre>
```

h2_liability

Convert Heritability to Liability Scale

Description

'h2_liability()' converts heritability estimates from the observed to liability scale.

Usage

```
h2_liability(h2, sample_prev, population_prev)
```

Arguments

```
h2 (numeric) Estimate of observed-scale heritability
sample_prev (numeric) Proportion of cases in the current sample
population_prev
(numeric) Population prevalence of trait
```

h2_vector_15D

Value

(numeric) Liability-scale heritability

Examples

```
h2_liability(0.28, 0.1, 0.05)
```

h2_vector_15D

h2 vector for 15 diseases

Description

Example h2 vector used in the vignette and examples.

Usage

h2_vector_15D

Format

A numeric matrix.

Source

Internal simulation

h2_vector_mat_15D

h2 jk matrix for 15 diseases

Description

Example h2 jk matrix used in the vignette and examples.

Usage

h2_vector_mat_15D

Format

A numeric matrix.

Source

Internal simulation

ldsc_h2	Estimate	heritability	-	refer	to	ldscr	R	package
(https://github.com/mglev1n/ldscr)		(scr)						

Description

'ldsc_h2()' uses ldscore regression to estimate the heritability of a trait from GWAS summary statistics and reference LD information.

Usage

```
ldsc_h2(
  munged_sumstats,
  sample_prev = NA,
  population_prev = NA,
  ld,
  wld,
  n_blocks = 200,
  chisq_max = NA,
  chr_filter = seq(1, 22, 1)
)
```

Arguments

munged_sumstats

Either a dataframe, or a path to a file containing munged summary statistics. Must contain at least columns named 'SNP' (rsid), 'A1' (effect allele), 'A2' (non-effect allele), 'N' (total sample size) and 'Z' (Z-score)

sample_prev

(numeric) For binary traits, this should be the prevalence of cases in the current sample, used for conversion from observed heritability to liability-scale heritability. The default is 'NA', which is appropriate for quantitative traits or estimating heritability on the observed scale.

population_prev

(numeric) For binary traits, this should be the population prevalence of the trait, used for conversion from observed heritability to liability-scale heritability. The default is 'NA', which is appropriate for quantitative traits or estimating heritability on the observed scale.

ld (character) Path to directory containing ld score files, ending in '*.12.ldscore.gz'.

wld (character) Path to directory containing weight files.

n_blocks (numeric) Number of blocks used to produce block jackknife standard errors.

Default is '200'

chisq_max (numeric) Maximum value of Z^2 for SNPs to be included in LD-score regres-

sion. Default is to set 'chisq_max' to the maximum of 80 and N*0.001.

chr_filter (numeric vector) Chromosomes to include in analysis. Separating even/odd

chromosomes may be useful for exploratory/confirmatory factor analysis.

ldsc_rg 11

Value

A [tibble][tibble::tibble-package] containing heritability information. If 'sample_prev' and 'population_prev' were provided, the heritability estimate will also be returned on the liability scale.

ldsc_rg

Estimate cross-trait genetic correlations (Robust Version) - refer to ldscr R package (https://github.com/mglev1n/ldscr)

Description

'ldsc_rg()' uses ldscore regression to estimate the pairwise genetic correlations between traits. The function relies on named lists of traits, sample prevalences, and population prevalences. The name of each trait should be consistent across each argument.

Usage

```
ldsc_rg(
  munged_sumstats,
  sample_prev = NA,
  population_prev = NA,
  ld,
 wld,
  n_blocks = 200,
  chisq_max = NA,
  chr_filter = seq(1, 22, 1)
)
```

Arguments

munged_sumstats

(list) A named list of dataframes, or paths to files containing munged summary statistics. Each set of munged summary statistics contain at least columns named 'SNP' (rsid), 'A1' (effect allele), 'A2' (non-effect allele), 'N' (total sample size) and 'Z' (Z-score)

sample_prev

(list) A named list containing the prevalence of cases in the current sample, used for conversion from observed heritability to liability-scale heritability. The default is 'NA', which is appropriate for quantitative traits or estimating heritability on the observed scale.

population_prev

(list) A named list containing the population prevalence of the trait, used for conversion from observed heritability to liability-scale heritability. The default is 'NA', which is appropriate for quantitative traits or estimating heritability on the observed scale.

(character) Path to directory containing ld score files, ending in '*.12.ldscore.gz'. (character) Path to directory containing weight files.

ld

wld

make_weights

n_blocks	(numeric) Number of blocks used to produce block jackknife standard errors. Default is '200'
chisq_max	(numeric) Maximum value of Z^2 for SNPs to be included in LD-score regression. Default is to set 'chisq_max' to the maximum of 80 and N*0.001.
chr_filter	(numeric vector) Chromosomes to include in analysis. Separating even/odd chromosomes may be useful for exploratory/confirmatory factor analysis.

Details

This function estimates the pairwise genetic correlations between an arbitrary number of traits. The function also estimates heritability for each individual trait. There is a [ggplot2::autoplot()] method for visualizing a heatmap of the results.

This version handles cases where traits have non-positive heritability estimates more gracefully by returning NA values for correlations involving such traits.

Value

A list of class 'ldscr_list' containing heritability and genetic correlation information - 'h2' = [tibble][tibble::tibble-package] containing heritability information for each trait. If 'sample_prev' and 'population_prev' were provided, the heritability estimates will also be returned on the liability scale. - 'rg' = [tibble][tibble::tibble-package] containing pairwise genetic correlations information. - 'raw' = A list of correlation/covariance matrices

Description

'make_weights()' Internal Function to make weights

Usage

```
make_weights(chi1, L2, wLD, N, M.tot)
```

Arguments

chi1	chi-square
L2	ld score
wLD	wld score
N	sample size
M.tot	Number of SNPs

Value

A numeric vector of initial LDSC weights for each SNP

merge_sumstats 13

merge_sumstats	Merging summary statistics with LD-score files - refer to ldscr R package (https://github.com/mglev1n/ldscr)

Description

'merge_sumstats()' Merging summary statistics with LD-score files

Usage

```
merge_sumstats(sumstats_df, w, x, chr_filter)
```

Arguments

sumstats_df dataframe of sumstat

w wld scorex ld score

chr_filter (numeric vector) Chromosomes to include in analysis. Separating even/odd

chromosomes may be useful for exploratory/confirmatory factor analysis.

Value

A tibble (data frame) containing the merged summary statistics and LD-score

perform_analysis	Internal function to perform LDSC heritability/covariance analysis -
, <u>-</u>	refer to ldscr R package (https://github.com/mglev1n/ldscr)

Description

'perform_analysis()' Internal function to perform LDSC heritability/covariance analysis

Usage

```
perform_analysis(n.blocks, n.snps, weighted.LD, weighted.chi, N.bar, m)
```

Arguments

n.blocks Number of blocks n.snps Number of SNPs

weighted.LD wld score
weighted.chi chi-square

N. bar Average N after mergingm Number of SNPs from LD data

Value

A list containing the results of the LDSC heritability/covariance analysis with the following elements:

- reg. tot: Estimated total heritability or covariance (regression coefficient scaled by m).
- tot.se: Standard error of the total heritability/covariance estimate, computed using a block jackknife.
- intercept: LDSC regression intercept.
- intercept. se: Standard error of the intercept, estimated via block jackknife.
- pseudo.values: Vector of pseudo-values from the block jackknife procedure, one per block.
- N.bar: Average sample size across SNPs after merging.

```
pleiotropyh2_cor_computing_single
```

Compute pleioh2g after bias correction for target disease

Description

This function is used to compute pleioh2g after bias correction for target disease

Usage

```
pleiotropyh2_cor_computing_single(
   G,
   phenotype,
   h2_vector,
   h2_vector_mat,
   Results_full_rg,
   Results_full_rg_array,
   sample_rep
)
```

index of target disease.

sampling times in bias correction

Arguments G

sample_rep

```
phenotype Vector of the phenotype name

h2_vector h2g vector for all traits - aligned as the order in phenotype file

h2_vector_mat h2g array from jackknife-block estimates for all traits - aligned as the order in phenotype file

Results_full_rg

genetic correlation matrix. - aligned as the order in phenotype file

Results_full_rg_array

genetic correlation jackknife-block array. - aligned as the order in phenotype file
```

Value

A 'list' containing the following elements: - 'target_disease' (character): The value "401.1". - 'target_disease_h2_est' (numeric): target disease h2g. - 'target_disease_h2_se' (numeric): target disease h2g_se. - 'selected_auxD' (character): auxiliary diseases. - 'h2pleio_uncorr' (numeric): pre-correction pleiotropic heritability estimate. - 'h2pleio_uncorr_se' (numeric): pre-correction percentage of pleiotropic heritability estimate. - 'percentage_h2pleio_uncorr_se' (numeric): pre-correction percentage of pleiotropic heritability jackknife s.e. estimate. - 'percentage_h2pleio_uncorr_se' (numeric): pre-correction percentage of pleiotropic heritability jackknife s.e. estimate. - 'percentage_h2pleio_uncorr_jackknife' (numeric): vector of all pre-correction percentage of pleiotropic heritability estimate. - 'h2pleio_corr_se' (numeric): post-correction pleiotropic heritability estimate. - 'percentage_h2pleio_corr' (numeric): post-correction percentage of pleiotropic heritability estimate. - 'percentage_h2pleio_corr_se' (numeric): post-correction percentage of pleiotropic heritability jackknife s.e. estimate. - 'percentage_h2pleio_corr_se' (numeric): post-correction percentage of pleiotropic heritability jackknife s.e. estimate. - 'corrected_weight' (numeric): corrected weight in bias correction.

Examples

```
G <- 1
data(Results_full_rg_15D)
data(Results_full_rg_array_15D)
data(h2_vector_15D)
data(h2_vector_mat_15D)
phenotype<-c("401.1","244.5","318","735.3","411.4",
"427.2","454.1","278.1","250.2","550.1","530.11",
"296.22","519.8","562.1","763")
sample_rep<-20
post_corrrresults_prune<-pleiotropyh2_cor_computing_single(G,phenotype,h2_vector_15D,h2_vector_mat_15D,Results_full_rg_array_15D, sample_rep)</pre>
```

```
pleiotropyh2_cor_computing_single_prune

Compute pleioh2g after bias correction for target disease
```

Description

This function is used to compute pleioh2g after bias correction for target disease

Usage

```
pleiotropyh2_cor_computing_single_prune(
   G,
   phenotype,
   h2_vector,
   h2_vector_mat,
   Results_full_rg,
   Results_full_rg_array,
   sample_rep
)
```

Arguments

G index of target disease.

phenotype Vector of the phenotype name

h2_vector h2g vector for all traits - aligned as the order in phenotype file

h2_vector_mat h2g array from jackknife-block estimates for all traits - aligned as the order in

phenotype file

Results_full_rg

genetic correlation matrix. - aligned as the order in phenotype file

Results_full_rg_array

genetic correlation jackknife-block array. - aligned as the order in phenotype

file

sample_rep sampling times in bias correction

Value

A 'list' containing the following elements: - 'target_disease' (character): The value "401.1". - 'target_disease_h2_est' (numeric): target disease h2g. - 'target_disease_h2_se' (numeric): target disease h2g_se. - 'selected_auxD' (character): auxiliary diseases. - 'h2pleio_uncorr' (numeric): pre-correction pleiotropic heritability estimate. - 'h2pleio_uncorr_se' (numeric): pre-correction pleiotropic heritability jackknife s.e. estimate. - 'percentage_h2pleio_uncorr_se' (numeric): pre-correction percentage of pleiotropic heritability estimate. - 'percentage_h2pleio_uncorr_se' (numeric): pre-correction percentage of pleiotropic heritability jackknife s.e. estimate. - 'percentage_h2pleio_uncorr_jackknife' (numeric): vector of all pre-correction percentage of pleiotropic heritability estimate. - 'h2pleio_corr_se' (numeric): post-correction pleiotropic heritability jackknife s.e. estimate. - 'percentage_h2pleio_corr' (numeric): post-correction percentage of pleiotropic heritability estimate. - 'percentage_h2pleio_corr_se' (numeric): post-correction percentage of pleiotropic heritability jackknife s.e. estimate. - 'percentage_h2pleio_corr_se' (numeric): post-correction percentage of pleiotropic heritability jackknife s.e. estimate. - 'percentage_h2pleio_corr_se' (numeric): post-correction percentage of pleiotropic heritability jackknife s.e. estimate. - 'percentage_h2pleio_corr_se' (numeric): post-correction percentage of pleiotropic heritability jackknife s.e. estimate. - 'corrected_weight' (numeric): corrected weight in bias correction.

Examples

```
G <- 1
data(Results_full_rg_15D)
data(Results_full_rg_array_15D)
data(h2_vector_15D)
data(h2_vector_mat_15D)
phenotype<-c("401.1","244.5","318","735.3","411.4",
"427.2","454.1","278.1","250.2","550.1","530.11",
"296.22","519.8","562.1","763")
sample_rep<-10
post_corrrresults_prune<-pleiotropyh2_cor_computing_single_prune(G,phenotype,h2_vector_15D,h2_vector_mat_15D,Results_full_rg_array_15D, sample_rep)</pre>
```

```
{\it Compute pleioh2g before bias correction for target disease}
```

Description

This function is used to compute pleioh2g after bias correction for target disease

Usage

```
pleiotropyh2_nocor_computing_single(
   G,
   phenotype,
   h2_vector,
   h2_vector_mat,
   Results_full_rg,
   Results_full_rg_array
)
```

Arguments

```
G index of target disease.

phenotype Vector of the phenotype name

h2_vector h2g vector for all traits - aligned as the order in phenotype file

h2_vector_mat h2g array from jackknife-block estimates for all traits - aligned as the order in phenotype file

Results_full_rg

genetic correlation matrix.- aligned as the order in phenotype file

Results_full_rg_array

genetic correlation jackknife-block array.- aligned as the order in phenotype file
```

Value

A 'list' containing the following elements: - 'target_disease' (character): The value "401.1". - 'target_disease_h2_est' (numeric): target disease h2g. - 'target_disease_h2_se' (numeric): target disease h2g_se. - 'selected_auxD' (character): auxiliary diseases. - 'h2pleio_uncorr' (numeric): pre-correction pleiotropic heritability estimate. - 'h2pleio_uncorr_se' (numeric): pre-correction pleiotropic heritability jackknife s.e. estimate. - 'percentage_h2pleio_uncorr' (numeric): pre-correction percentage of pleiotropic heritability jackknife s.e. estimate. - 'percentage_h2pleio_uncorr_se' (numeric): pre-correction percentage of pleiotropic heritability jackknife s.e. estimate. - 'percentage_h2pleio_jackknife_uncorr' (numeric): vector of all pre-correction percentage of pleiotropic heritability jackknife estimates.

Examples

```
G <- 1
data(Results_full_rg_15D)
data(Results_full_rg_array_15D)
data(h2_vector_15D)
data(h2_vector_mat_15D)
phenotype<-c("401.1","244.5","318","735.3","411.4",
"427.2","454.1","278.1","250.2","550.1","530.11",
"296.22","519.8","562.1","763")
h2pleiobeforecorr<-pleiotropyh2_nocor_computing_single(G,phenotype,h2_vector_15D,h2_vector_mat_15D,Results_full_rg_15D,Results_full_rg_array_15D)</pre>
```

 ${\tt Prune_disease_selection_DTrgzscore}$

Prune disease selection

Description

Prune disease selection

Usage

```
Prune_disease_selection_DTrgzscore(
   Target_disease,
   trait_name,
   Rg_mat,
   Rg_mat_z,
   rg_threshold
)
```

Arguments

```
Target_disease trait_name of target disease
```

trait_name of pre-prune rg_matrix

Rg_mat pre-prune rg_matrix
Rg_mat_z pre-prune rg z matrix

rg_threshold rg_threshold

Value

Rg_mat_leave

Examples

```
trait_name<-c("401.1","244.5","318","735.3","411.4",
"427.2","454.1","278.1","250.2","550.1","530.11",
"296.22","519.8","562.1","763")
data("Results_full_rg_15D")
data("Rg_mat_z_15D")
Target_disease<-'401.1'
rg_threshold<-sqrt(0.3)
Rg_prune<-Prune_disease_selection_DTrgzscore(Target_disease, trait_name,
Results_full_rg_15D,Rg_mat_z_15D,rg_threshold)</pre>
```

pruning_pleioh2g_wrapper

Perform pruning in computing pleioh2g and correct bias

Description

Perform pruning in computing pleioh2g and correct bias

Usage

```
pruning_pleioh2g_wrapper(
   G,
   phenotype,
   munged_sumstats,
   ld_path,
   wld_path,
   sample_prev = NULL,
   population_prev = NULL,
   n_block = 200,
   hmp3,
   sample_rep
)
```

Arguments

G index of target disease.

phenotype Vector of the phenotype name

munged_sumstats

All LDSC-munged GWAS .stat.gz

ld_path Path to directory containing ld score files.
wld_path Path to directory containing weight files.

sample_prev Vector of sample prevalence, in the same order of input GWAS summary statis-

tics.

20 read_ld

population_prev

Vector of population prevalence, in the same order of input GWAS summary

statistics.

n_blockhmp3pirectory for hapmap 3 snplist.sample_repsampling times in bias correction

Value

A 'list' containing the following elements: - 'target_disease' (character): The value "401.1". - 'target_disease_h2_est' (numeric): target disease h2g. - 'target_disease_h2_se' (numeric): target disease h2g_se. - 'selected_auxD' (character): auxiliary diseases. - 'h2pleio_uncorr' (numeric): pre-correction pleiotropic heritability estimate. - 'h2pleio_uncorr_se' (numeric): pre-correction percentage of pleiotropic heritability estimate. - 'percentage_h2pleio_uncorr_se' (numeric): pre-correction percentage of pleiotropic heritability jackknife s.e. estimate. - 'percentage_h2pleio_uncorr_se' (numeric): pre-correction percentage of pleiotropic heritability jackknife s.e. estimate. - 'percentage_h2pleio_uncorr_jackknife' (numeric): vector of all pre-correction percentage of pleiotropic heritability estimate. - 'h2pleio_corr_se' (numeric): post-correction pleiotropic heritability jackknife s.e. estimate. - 'percentage_h2pleio_corr' (numeric): post-correction percentage of pleiotropic heritability estimate. - 'percentage_h2pleio_corr_se' (numeric): post-correction percentage of pleiotropic heritability jackknife s.e. estimate. - 'percentage_h2pleio_corr_se' (numeric): post-correction percentage of pleiotropic heritability jackknife s.e. estimate. - 'corrected_weight' (numeric): corrected weight in bias correction.

read_ld Read ld from either internal or external file - refer to ldscr R package

(https://github.com/mglev1n/ldscr)

Description

'read_ld()' Read ld from either internal or external file.

Usage

read_ld(ld)

Arguments

1d (character) Path to directory containing ld score files, ending in '*.12.ldscore.gz'.

Default is 'NA', which will utilize the built-in ld score files from Pan-UK Biobank

for the ancestry specified in 'ancestry'.

Value

A data frame (tibble) containing LD score information read from the specified directory. Each row corresponds to a SNP, and columns typically include:

• CHR: Chromosome number.

read_m 21

- SNP: SNP identifier (rsID).
- BP: Base pair position.
- L2: LD score value.
- M: Number of SNPs used in the LD score computation.

read_m

Read M from either internal or external file - refer to ldscr R package (https://github.com/mglev1n/ldscr)

Description

'read_m()' Read M from either internal or external file

Usage

read_m(ld)

Arguments

ld

(character) Path to directory containing ld score files, ending in '*.12.ldscore.gz'. Default is 'NA', which will utilize the built-in ld score files from Pan-UK Biobank for the ancestry specified in 'ancestry'.

Value

A data frame (tibble) containing SNP counts read from the specified M files.

read_sumstats

Read summary statistics from either internal or external file - refer to $ldscr\ R$ package (https://github.com/mglev1n/ldscr)

Description

'read_sumstats()' Read summary statistics from either internal or external file

Usage

```
read_sumstats(munged_sumstats, name)
```

Arguments

munged_sumstats

Either a dataframe, or a path to a file containing munged summary statistics. Must contain at least columns named 'SNP' (rsid), 'A1' (effect allele), 'A2' (non-effect allele), 'N' (total sample size) and 'Z' (Z-score)

name trait name

read_wld

Value

A data frame (tibble) containing GWAS summary statistics for the specified trait. The returned object will always contain at least the following columns:

- SNP: SNP identifier (rsID).
- A1: Effect allele.
- A2: Non-effect allele.
- N: Total sample size for the SNP.
- Z: Z-score of SNP-trait association.

read_wld

Read wld from either internal or external file - refer to ldscr R package (https://github.com/mglev1n/ldscr)

Description

'read_wld()' Read wld from either internal or external file

Usage

read_wld(wld)

Arguments

wld

(character) Path to directory containing weight files. Default is 'NA', which will utilize the built-in weight files from Pan-UK Biobank for the ancestry specified in 'ancestry'.

Value

A data frame (tibble) containing LD weight information read from the specified directory. Each row corresponds to a SNP, and columns typically include:

- CHR: Chromosome number.
- SNP: SNP identifier (rsID).
- BP: Base pair position.
- wLD: Weight for LD regression.

Results_full_rg_15D 23

Results_full_rg_15D

Genetic correlation matrix for 15 diseases

Description

Example genetic correlation matrix used in the vignette and examples.

Usage

```
Results\_full\_rg\_15D
```

Format

A numeric matrix.

Source

Internal simulation

```
Results_full_rg_array_15D
```

Jackknife array of genetic correlations (15 diseases)

Description

Jackknife array of genetic correlations (15 diseases)

Usage

```
Results_full_rg_array_15D
```

Format

A 3-dim array.

Source

Internal simulation

Rg_mat_z_15D

Genetic correlation Z matrix for 15 diseases

Description

Example genetic correlation Z matrix used in the vignette and examples.

Usage

```
Rg_mat_z_15D
```

Format

A numeric matrix.

Source

Internal simulation

```
sumstats\_munged\_example\_input
```

Example munged dataframe - refer to ldscr R package (https://github.com/mglev1n/ldscr)

Description

Example munged dataframe - refer to ldscr R package (https://github.com/mglev1n/ldscr)

Usage

```
sumstats_munged_example_input(example, dataframe = TRUE)
```

Arguments

example (character) "401.1" which have been included as example traits.

dataframe (logical) If 'TRUE' (default), return an example munged dataframe. If 'FALSE',

return path to the file on disk.

Value

either a [tibble][tibble::tibble-package] containing a munged dataframe, or a path to the file on disk.

Index

```
* datasets
                                               Results_full_rg_15D, 23
    h2_vector_15D, 9
                                               Results_full_rg_array_15D, 23
    h2_vector_mat_15D, 9
                                               Rg_mat_z_15D, 24
    Results_full_rg_15D, 23
                                               sumstats_munged_example_input, 24
    Results_full_rg_array_15D, 23
    Rg_mat_z_15D, 24
Cal_cor_pleiotropic_h2, 2
Cal_cor_pleiotropic_h2_corrected_single,
Cal_cor_pleiotropic_h2_single, 4
Cal_cor_test_single, 5
Cal_rg_h2g_alltraits, 5
Cal_rg_h2g_jk_alltraits, 6
generate_proposal_sample_changea_cor,
h2_liability, 8
h2_vector_15D, 9
h2_vector_mat_15D, 9
1dsc_h2, 10
ldsc_rg, 11
make_weights, 12
merge_sumstats, 13
perform_analysis, 13
pleiotropyh2_cor_computing_single, 14
pleiotropyh2_cor_computing_single_prune,
pleiotropyh2_nocor_computing_single,
Prune_disease_selection_DTrgzscore, 18
pruning_pleioh2g_wrapper, 19
read_1d, 20
read_m, 21
read_sumstats, 21
read_wld, 22
```