Fit Bayesian Dynamic Generalized Additive Models to multivariate observations. Users can build nonlinear State-Space models that can incorporate semiparametric effects in observation and process components, using a wide range of observation families. Estimation is performed using Markov Chain Monte Carlo with Hamiltonian Monte Carlo in the software 'Stan'. References: Clark & Wells (2023) <doi:10.1111/2041-210X.13974>.
| Version: | 1.1.593 | 
| Depends: | R (≥ 3.6.0) | 
| Imports: | brms (≥ 2.21.0), methods, mgcv (≥ 1.8-13), insight (≥
0.19.1), marginaleffects (≥ 0.29.0), Rcpp (≥ 0.12.0), rstan (≥ 2.29.0), posterior (≥ 1.0.0), loo (≥ 2.3.1), rstantools (≥ 2.1.1), bayesplot (≥ 1.5.0), ggplot2 (≥ 3.5.0), mvnfast, purrr, dplyr, magrittr, rlang, generics, tibble (≥ 3.0.0), patchwork (≥ 1.2.0) | 
| LinkingTo: | Rcpp, RcppArmadillo | 
| Suggests: | scoringRules, matrixStats, cmdstanr (≥ 0.5.0), tweedie, splines2, extraDistr, corpcor, wrswoR, ggrepel, ggpp, ggarrow, xts, lubridate, knitr, collapse, rmarkdown, rjags, coda, runjags, usethis, testthat, colorspace | 
| Enhances: | gratia (≥ 0.9.0), tidyr | 
| Published: | 2025-09-05 | 
| DOI: | 10.32614/CRAN.package.mvgam | 
| Author: | Nicholas J Clark  [aut, cre],
  KANK Karunarathna  [ctb] (ARMA parameterisations and factor models),
  Sarah Heaps  [ctb]
    (VARMA parameterisations),
  Scott Pease  [ctb]
    (broom enhancements),
  Matthijs Hollanders  [ctb] (ggplot
    visualizations) | 
| Maintainer: | Nicholas J Clark  <nicholas.j.clark1214 at gmail.com> | 
| BugReports: | https://github.com/nicholasjclark/mvgam/issues | 
| License: | MIT + file LICENSE | 
| URL: | https://github.com/nicholasjclark/mvgam,
https://nicholasjclark.github.io/mvgam/ | 
| NeedsCompilation: | yes | 
| Additional_repositories: | https://mc-stan.org/r-packages/ | 
| Citation: | mvgam citation info | 
| Materials: | README, NEWS | 
| In views: | Bayesian, Environmetrics, TimeSeries | 
| CRAN checks: | mvgam results |