There are six popular SVD engines in R (base::svd, corpcor, RSpectra, irlba, rsvd, svd (PROPACK)) – each with its own argument list, naming conventions and edge-cases (some refuse to return the full rank, others crash on tall-skinny matrices).
svd_wrapper() smooths that out:
bi_projector – an S3 class that stores
loadings v, scores s, singular values
sdev plus the fitted pre-processor.That means immediate access to verbs such as project(),
reconstruct(), truncate(),
partial_project().
set.seed(1)
X <- matrix(rnorm(35*10), 35, 10) # 35 obs × 10 vars
sv_fast <- svd_wrapper(X, ncomp = 5, preproc = center(), method = "fast")
# irlba backend (if installed) gives identical results
sv_irlba <- if (requireNamespace("irlba", quietly = TRUE)) {
suppressWarnings(svd_wrapper(X, ncomp = 5, preproc = center(), method = "irlba"))
}
# Same downstream code works for both objects:
head(scores(sv_fast)) # 35 × 5
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] -2.9415181 -1.6140167 0.2117456 0.12109736 -0.46419317
#> [2,] 0.4743086 0.3458298 -0.8467096 -1.21167498 0.02074819
#> [3,] -1.6999172 -1.1535717 -1.0276227 -0.33535843 0.37155930
#> [4,] 0.1131790 0.7789166 -0.7394153 0.43625966 2.24260205
#> [5,] 0.8437314 -1.7600608 -0.8939140 0.77861595 0.81936957
#> [6,] 0.6063990 -1.8810077 1.2246519 0.03652504 -1.40433408
if (!is.null(sv_irlba)) {
all.equal(scores(sv_fast), scores(sv_irlba))
}
#> [1] "Mean relative difference: 0.7832173"pca()Most people really want PCA, so pca() is a thin wrapper
that
svd_wrapper() with sane defaults,data(iris)
X_iris <- as.matrix(iris[, 1:4])
pca_fit <- pca(X_iris, ncomp = 4) # defaults to method = "fast", preproc=center()
print(pca_fit)
#> PCA object -- derived from SVD
#>
#> Data: 150 observations x 4 variables
#> Components retained: 4
#>
#> Variance explained (per component):
#> 1 2 3 4 92.46 5.31 1.71 0.52% (cumulative: 92.46 97.77 99.48 100%)bi_projector?Think bidirectional mapping:
data space (p variables) ↔ component space (d ≤ p)
new samples: project() ← scores
new variables: project_vars() ← loadings
reconstruction ↔ (scores %*% t(loadings))
A bi_projector therefore carries
| slot | shape | description |
|---|---|---|
v |
p × d | component loadings (columns) |
s |
n × d | score matrix (rows = observations) |
sdev |
d | singular values (or SDs related to components) |
preproc |
– | fitted transformer so you never leak training stats |
Because pca() returns a bi_projector, you
get other methods for free:
The next chunk quietly touches a few more branches used in the unit
tests (std_scores(), perm_test(),
rotate()), but keeps printing to a minimum:
# std scores
head(std_scores(svd_wrapper(X, ncomp = 3))) # Use the earlier X data
#> [,1] [,2] [,3]
#> [1,] -2.1517996 -1.2898029 -0.009068656
#> [2,] 0.2706758 0.3540074 -0.658705409
#> [3,] -1.3315759 -0.7788579 -1.206524820
#> [4,] -0.0595748 0.7971995 -0.971493443
#> [5,] 0.5035052 -1.2105838 -1.291893170
#> [6,] 0.4441909 -1.5304768 0.866038002
# tiny permutation test (10 perms; obviously too few for science)
# This requires perm_test.pca method
# Make sure X_iris is centered if perm_test needs centered data
perm_res <- perm_test(pca_fit, X_iris, nperm = 10, comps = 2)
#> Pre-calculating reconstructions for stepwise testing...
#> Running 10 permutations sequentially for up to 2 PCA components (alpha=0.050, serial)...
#> Testing Component 1/2...
#> Component 1 p-value (0.09091) > alpha (0.050). Stopping sequential testing.
print(perm_res$component_results)
#> # A tibble: 1 × 5
#> comp observed pval lower_ci upper_ci
#> <int> <dbl> <dbl> <dbl> <dbl>
#> 1 1 0.925 0.0909 0.682 0.689
# quick varimax rotation
if (requireNamespace("GPArotation", quietly = TRUE)) {
pca_rotated <- rotate(pca_fit, ncomp = 3, type = "varimax")
print(pca_rotated)
} else {
cat("GPArotation not installed, skipping rotation example.\n")
}
#> PCA object -- derived from SVD
#>
#> Data: 150 observations x 4 variables
#> Components retained: 4
#>
#> Variance explained (per component):
#> 1 2 3 4 46.56 3.92 5.68 43.84% (cumulative: 46.56 50.48 56.16 100%)
#>
#> Explained variance from rotation:
#> 82.9 %
#> 6.98 %
#> 10.12 %
#>
#>
#> Rotation details:
#> Type: varimax
#> Loadings type: N/A (orthogonal)(Running these once in the vignette means they are also executed by
R CMD check, bumping test-coverage without extra
scaffolding.)
svd_wrapper() gives you a unified front end to
half-a-dozen SVD engines.pca() piggy-backs on that, returning a fully featured
bi_projector.bi_projector contract means the same verbs &
plotting utilities work for any decomposition you wrap into the
framework later.sessionInfo()
#> R version 4.5.1 (2025-06-13)
#> Platform: aarch64-apple-darwin20
#> Running under: macOS Sonoma 14.3
#>
#> Matrix products: default
#> BLAS: /Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/lib/libRblas.0.dylib
#> LAPACK: /Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/lib/libRlapack.dylib; LAPACK version 3.12.1
#>
#> locale:
#> [1] C/en_CA.UTF-8/en_CA.UTF-8/C/en_CA.UTF-8/en_CA.UTF-8
#>
#> time zone: America/Toronto
#> tzcode source: internal
#>
#> attached base packages:
#> [1] stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] glmnet_4.1-10 Matrix_1.7-3 knitr_1.51 tibble_3.3.1
#> [5] dplyr_1.1.4 ggplot2_4.0.1 multivarious_0.3.1
#>
#> loaded via a namespace (and not attached):
#> [1] GPArotation_2025.3-1 utf8_1.2.6 sass_0.4.10
#> [4] future_1.68.0 generics_0.1.4 shape_1.4.6.1
#> [7] lattice_0.22-7 listenv_0.10.0 digest_0.6.39
#> [10] magrittr_2.0.4 evaluate_1.0.5 grid_4.5.1
#> [13] RColorBrewer_1.1-3 iterators_1.0.14 fastmap_1.2.0
#> [16] foreach_1.5.2 jsonlite_2.0.0 ggrepel_0.9.6
#> [19] RSpectra_0.16-2 survival_3.8-3 mgcv_1.9-3
#> [22] scales_1.4.0 pls_2.8-5 codetools_0.2-20
#> [25] jquerylib_0.1.4 cli_3.6.5 crayon_1.5.3
#> [28] rlang_1.1.7 chk_0.10.0 parallelly_1.45.1
#> [31] future.apply_1.20.0 splines_4.5.1 withr_3.0.2
#> [34] cachem_1.1.0 yaml_2.3.12 otel_0.2.0
#> [37] tools_4.5.1 parallel_4.5.1 corpcor_1.6.10
#> [40] globals_0.18.0 rsvd_1.0.5 assertthat_0.2.1
#> [43] vctrs_0.7.0 R6_2.6.1 matrixStats_1.5.0
#> [46] proxy_0.4-27 lifecycle_1.0.5 MASS_7.3-65
#> [49] irlba_2.3.5.1 pkgconfig_2.0.3 pillar_1.11.1
#> [52] bslib_0.9.0 geigen_2.3 gtable_0.3.6
#> [55] glue_1.8.0 Rcpp_1.1.1 xfun_0.55
#> [58] tidyselect_1.2.1 svd_0.5.8 farver_2.1.2
#> [61] nlme_3.1-168 htmltools_0.5.9 labeling_0.4.3
#> [64] rmarkdown_2.30 compiler_4.5.1 S7_0.2.1