--- title: Partial Least Squares Correlation (PLSC) with Inference output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Partial Least Squares Correlation (PLSC) with Inference} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} params: family: red css: albers.css resource_files: - albers.css - albers.js includes: in_header: |- --- ```{r setup, include=FALSE} knitr::opts_chunk$set(collapse = TRUE, comment = "#>", fig.width = 7, fig.height = 4.5) library(multivarious) library(ggplot2) set.seed(1) ``` # 1. What this vignette covers This walk-through shows how to: 1) Fit a Behavior-style PLSC model (`plsc()`), 2) Inspect latent variables (LVs) and scores, 3) Run a permutation test to decide how many LVs are significant, and 4) Use bootstrap ratios to identify stable loadings, with simple visualizations. The workflow is intentionally small and fast so the vignette runs quickly; for real analyses, increase the number of permutations/bootstraps. # 2. Simulate coupled X/Y blocks ```{r simulate} n <- 80 # subjects pX <- 8 # brain/features pY <- 5 # behavior d <- 2 # true latent dimensions # orthonormal loadings Vx_true <- qr.Q(qr(matrix(rnorm(pX * d), pX, d))) Vy_true <- qr.Q(qr(matrix(rnorm(pY * d), pY, d))) F_scores <- matrix(rnorm(n * d), n, d) # latent scores noise <- 0.10 X <- F_scores %*% t(Vx_true) + noise * matrix(rnorm(n * pX), n, pX) Y <- F_scores %*% t(Vy_true) + noise * matrix(rnorm(n * pY), n, pY) ``` # 3. Fit PLSC ```{r fit} fit_plsc <- plsc(X, Y, ncomp = 3, # request a few extra comps preproc_x = standardize(), # correlation-scale preproc_y = standardize()) fit_plsc$singvals fit_plsc$explained_cov ``` # 4. Inspect scores (brain vs behavior) ```{r scores-plot, fig.align='center'} scores_df <- data.frame( LV1_x = scores(fit_plsc, "X")[, 1], LV1_y = scores(fit_plsc, "Y")[, 1], LV2_x = scores(fit_plsc, "X")[, 2], LV2_y = scores(fit_plsc, "Y")[, 2] ) ggplot(scores_df, aes(x = LV1_y, y = LV1_x)) + geom_point(alpha = 0.7) + geom_smooth(method = "lm", se = FALSE, color = "firebrick") + labs(x = "Behavior scores (LV1)", y = "Brain scores (LV1)", title = "Score association for LV1") + theme_minimal() ``` # 5. Permutation test: how many LVs? Shuffle rows of `Y` to break the X–Y link and build an empirical null for the singular values. ```{r perm-test} set.seed(123) pt <- perm_test(fit_plsc, X, Y, nperm = 199, comps = 3, parallel = FALSE) pt$component_results cat("Sequential n_significant (alpha = 0.05):", pt$n_significant, "\n") ``` # 6. Bootstrap ratios for stable loadings Bootstrap resamples subjects, re-fits PLSC, sign-aligns loadings, and reports mean/SD (ratio ≈ Z). Here we keep it light for the vignette; use ≥500–1000 in practice. ```{r bootstrap} set.seed(321) boot_plsc <- bootstrap(fit_plsc, nboot = 120, X = X, Y = Y, comps = 2, parallel = FALSE) # X-loadings bootstrap ratios for LV1 df_bsr <- data.frame( variable = paste0("x", seq_len(pX)), bsr = boot_plsc$z_vx[, 1] ) ggplot(df_bsr, aes(x = reorder(variable, bsr), y = bsr)) + geom_hline(yintercept = c(-2, 2), linetype = "dashed", color = "grey50") + geom_col(fill = "#1f78b4") + coord_flip() + labs(x = NULL, y = "Bootstrap ratio (X loadings, LV1)", title = "Stable variables exceed |BSR| ≈ 2") + theme_minimal() ``` Do the same for Y loadings if needed: ```{r bootstrap-y, echo=FALSE} df_bsr_y <- data.frame( variable = paste0("y", seq_len(pY)), bsr = boot_plsc$z_vy[, 1] ) ggplot(df_bsr_y, aes(x = reorder(variable, bsr), y = bsr)) + geom_hline(yintercept = c(-2, 2), linetype = "dashed", color = "grey50") + geom_col(fill = "#33a02c") + coord_flip() + labs(x = NULL, y = "Bootstrap ratio (Y loadings, LV1)", title = "Behavior variables driving LV1") + theme_minimal() ``` # 7. Practical tips - Use `standardize()` to run PLSC on correlation scale (default here); switch to `center()` for covariance scale. - Increase `nperm` (e.g., 999) and `nboot` (≥500) for publication-grade inference. - Interpret loadings only where bootstrap ratios exceed ~|2|, and only for LVs that pass the permutation test. - To visualise higher-dimensional loading maps (e.g., imaging), replace the bar plots with your spatial plotting routine applied to `boot_plsc$z_vx`.