Cross-validation for Dimensionality Reduction

Why Cross-validate Dimensionality Reduction?

When using PCA or other dimensionality reduction methods, we often face questions like:

Cross-validation provides principled answers by testing how well models trained on one subset of data perform on held-out data.

Quick Example: Finding the Right Number of Components

Let’s use the iris dataset to find the optimal number of PCA components via reconstruction error.

set.seed(123)
X <- as.matrix(iris[, 1:4])  # 150 samples x 4 features

# Create 5-fold cross-validation splits
K <- 5
fold_ids <- sample(rep(1:K, length.out = nrow(X)))
folds <- lapply(1:K, function(k) list(
  train = which(fold_ids != k),
  test  = which(fold_ids == k)
))

Define the fitting and measurement functions. The measurement function projects test data, reconstructs it, and computes RMSE:

fit_pca <- function(train_data, ncomp) {
  pca(train_data, ncomp = ncomp, preproc = center())
}

measure_reconstruction <- function(model, test_data) {
  # Project test data to score space
 scores <- project(model, test_data)

  # Reconstruct: scores %*% t(loadings), then reverse centering
 recon <- scores %*% t(model$v)
  recon <- inverse_transform(model$preproc, recon)

  # Compute RMSE
  rmse <- sqrt(mean((test_data - recon)^2))
  tibble::tibble(rmse = rmse)
}

Now run cross-validation for 1–4 components:

results_list <- lapply(1:4, function(nc) {
  cv_res <- cv_generic(
    data = X,
    folds = folds,
    .fit_fun = fit_pca,
    .measure_fun = measure_reconstruction,
    fit_args = list(ncomp = nc),
    backend = "serial"
  )
  # Extract RMSE from each fold and average
  fold_rmse <- sapply(cv_res$metrics, function(m) m$rmse)
  data.frame(ncomp = nc, rmse = mean(fold_rmse))
})

cv_results <- do.call(rbind, results_list)
print(cv_results)
#>   ncomp         rmse
#> 1     1 2.949027e-01
#> 2     2 1.603380e-01
#> 3     3 7.673558e-02
#> 4     4 4.440794e-16

Two components capture most of the structure; additional components yield diminishing returns.

Understanding the Output

The cv_generic() function returns a tibble with three columns:

# Run CV once to inspect the structure
cv_example <- cv_generic(
  X, folds,
  .fit_fun = fit_pca,
  .measure_fun = measure_reconstruction,
  fit_args = list(ncomp = 2)
)

# Structure overview
str(cv_example, max.level = 1)
#> tibble [5 × 3] (S3: tbl_df/tbl/data.frame)

# Extract metrics from all folds
all_metrics <- dplyr::bind_rows(cv_example$metrics)
print(all_metrics)
#> # A tibble: 5 × 1
#>    rmse
#>   <dbl>
#> 1 0.157
#> 2 0.135
#> 3 0.181
#> 4 0.132
#> 5 0.197

Custom Cross-validation Scenarios

Scenario 1: Comparing Preprocessing Strategies

Use cv_generic() to compare centering alone versus z-scoring:

prep_center <- center()
prep_zscore <- colscale(center(), type = "z")

fit_with_prep <- function(train_data, ncomp, preproc) {
  pca(train_data, ncomp = ncomp, preproc = preproc)
}

# Compare both strategies with 3 components
cv_center <- cv_generic(
  X, folds,
  .fit_fun = fit_with_prep,
  .measure_fun = measure_reconstruction,
  fit_args = list(ncomp = 3, preproc = prep_center)
)

cv_zscore <- cv_generic(
  X, folds,
  .fit_fun = fit_with_prep,
  .measure_fun = measure_reconstruction,
  fit_args = list(ncomp = 3, preproc = prep_zscore)
)

rmse_center <- mean(sapply(cv_center$metrics, `[[`, "rmse"))
rmse_zscore <- mean(sapply(cv_zscore$metrics, `[[`, "rmse"))

cat("Center only - RMSE:", round(rmse_center, 4), "\n")
#> Center only - RMSE: 0.0764
cat("Z-score     - RMSE:", round(rmse_zscore, 4), "\n")
#> Z-score     - RMSE: 0.1053

For iris, centering alone performs slightly better since the variables are already on similar scales.

Scenario 2: Parallel Cross-validation

For larger datasets, run folds in parallel:

# Setup parallel backend
library(future)
plan(multisession, workers = 4)

# Run CV in parallel
cv_parallel <- cv_generic(
  X,
  folds = folds,
  .fit_fun = fit_pca,
  .measure_fun = measure_pca,
  fit_args = list(ncomp = 4),
  backend = "future"  # Use parallel backend
)

# Don't forget to reset
plan(sequential)

Computing Multiple Metrics

You can return multiple metrics from the measurement function:

measure_multi <- function(model, test_data) {
  scores <- project(model, test_data)
  recon <- scores %*% t(model$v)
  recon <- inverse_transform(model$preproc, recon)

  residuals <- test_data - recon
  ss_res <- sum(residuals^2)
  ss_tot <- sum((test_data - mean(test_data))^2)

  tibble::tibble(
    rmse = sqrt(mean(residuals^2)),
    mae  = mean(abs(residuals)),
    r2   = 1 - ss_res / ss_tot
  )
}

cv_multi <- cv_generic(
  X, folds,
  .fit_fun = fit_pca,
  .measure_fun = measure_multi,
  fit_args = list(ncomp = 3)
)

all_metrics <- dplyr::bind_rows(cv_multi$metrics)
print(all_metrics)
#> # A tibble: 5 × 3
#>     rmse    mae    r2
#>    <dbl>  <dbl> <dbl>
#> 1 0.0690 0.0475 0.999
#> 2 0.0603 0.0431 0.999
#> 3 0.106  0.0716 0.997
#> 4 0.0624 0.0453 0.999
#> 5 0.0863 0.0680 0.998

cat("\nMean across folds:\n")
#> 
#> Mean across folds:
cat("RMSE:", round(mean(all_metrics$rmse), 4), "\n")
#> RMSE: 0.0767
cat("MAE: ", round(mean(all_metrics$mae), 4), "\n")
#> MAE:  0.0551
cat("R2:  ", round(mean(all_metrics$r2), 4), "\n")
#> R2:   0.9984
Metric Description Interpretation
RMSE Root mean squared error Lower is better; in original units
MAE Mean absolute error Less sensitive to outliers than RMSE
Coefficient of determination Proportion of variance explained (1 = perfect)

Tips for Effective Cross-validation

1. Preprocessing Inside the Loop

Always fit preprocessing parameters inside the CV loop:

# WRONG: Preprocessing outside CV leaks information
X_scaled <- scale(X)  # Uses mean/sd from ALL samples including test!
cv_wrong <- cv_generic(X_scaled, folds, ...)

# RIGHT: Let the model handle preprocessing internally
# Each fold fits centering/scaling on training data only
fit_pca <- function(train_data, ncomp) {
  pca(train_data, ncomp = ncomp, preproc = center())
}

2. Choose Appropriate Fold Sizes

3. Consider Metric Choice

Advanced: Cross-validating Other Projectors

The CV framework works with any projector type. The key is writing appropriate fit and measure functions.

# Nyström approximation for kernel PCA
fit_nystrom <- function(train_data, ncomp) {
  nystrom_approx(train_data, ncomp = ncomp, nlandmarks = 50, preproc = center())
}

# Kernel-space reconstruction error
measure_kernel <- function(model, test_data) {
  S <- project(model, test_data)
  K_hat <- S %*% t(S)
  Xc <- reprocess(model, test_data)
  K_true <- Xc %*% t(Xc)
  tibble::tibble(kernel_rmse = sqrt(mean((K_hat - K_true)^2)))
}

cv_nystrom <- cv_generic(
  X, folds,
  .fit_fun = fit_nystrom,
  .measure_fun = measure_kernel,
  fit_args = list(ncomp = 10)
)

Kernel PCA via Nyström (standard and double)

The nystrom_approx() function provides two variants:

With a centered linear kernel and all points as landmarks (m = N), the Nyström eigen-decomposition recovers the exact top eigenpairs of the kernel matrix K = X_c X_c^T. Below is a reproducible snippet that demonstrates this and shows how to project new data.

set.seed(123)
X <- matrix(rnorm(80 * 10), 80, 10)
ncomp <- 5

# Exact setting: linear kernel + centering + m = N
fit_std <- nystrom_approx(
  X, ncomp = ncomp, landmarks = 1:nrow(X), preproc = center(), method = "standard"
)

# Compare kernel eigenvalues: eig(K) vs fit_std$sdev^2
Xc <- transform(fit_std$preproc, X)
K  <- Xc %*% t(Xc)
lam_K <- eigen(K, symmetric = TRUE)$values[1:ncomp]

data.frame(
  component = 1:ncomp,
  nystrom = sort(fit_std$sdev^2, decreasing = TRUE),
  exact_K  = sort(lam_K,          decreasing = TRUE)
)
#>   component   nystrom   exact_K
#> 1         1 117.64481 117.64481
#> 2         2 112.66863 112.66863
#> 3         3 103.44825 103.44825
#> 4         4  83.17891  83.17891
#> 5         5  78.30886  78.30886

# Relationship with PCA: prcomp() returns singular values / sqrt(n - 1)
p <- prcomp(Xc, center = FALSE, scale. = FALSE)
lam_from_pca <- p$sdev[1:ncomp]^2 * (nrow(X) - 1) # equals eig(K)

data.frame(
  component = 1:ncomp,
  from_pca  = sort(lam_from_pca,  decreasing = TRUE),
  exact_K   = sort(lam_K,         decreasing = TRUE)
)
#>   component  from_pca   exact_K
#> 1         1 117.64481 117.64481
#> 2         2 112.66863 112.66863
#> 3         3 103.44825 103.44825
#> 4         4  83.17891  83.17891
#> 5         5  78.30886  78.30886

# Out-of-sample projection for new rows
new_rows <- 1:5
scores_new <- project(fit_std, X[new_rows, , drop = FALSE])
head(scores_new)
#>            [,1]         [,2]        [,3]       [,4]       [,5]
#> [1,] -0.5065700 -0.003782324 -0.89690602 -1.2402365 -0.2466715
#> [2,] -0.3673067  0.489430969 -1.23213982 -1.5330320  0.7247966
#> [3,]  1.9065578 -0.008104080 -0.61654002  1.5191661  1.2188904
#> [4,] -1.5843734 -0.908340577 -0.94045424 -2.8897545 -2.0328659
#> [5,]  0.5690207  0.002415067  0.09988366 -0.0194067  0.5888599

# Double Nyström collapses to standard when l = m = N
fit_dbl <- nystrom_approx(
  X, ncomp = ncomp, landmarks = 1:nrow(X), preproc = center(), method = "double", l = nrow(X)
)
all.equal(sort(fit_std$sdev^2, decreasing = TRUE), sort(fit_dbl$sdev^2, decreasing = TRUE))
#> [1] TRUE

For large feature counts (p >> n), set method = "double" and choose a modest intermediate rank l to reduce the small problem size. Provide a custom kernel_func if you need a non-linear kernel (e.g., RBF).

# Example RBF kernel
gaussian_kernel <- function(A, B, sigma = 1) {
  # ||a-b||^2 = ||a||^2 + ||b||^2 - 2 a·b
  G  <- A %*% t(B)
  a2 <- rowSums(A * A)
  b2 <- rowSums(B * B)
  D2 <- outer(a2, b2, "+") - 2 * G
  exp(-D2 / (2 * sigma^2))
}

fit_rbf <- nystrom_approx(
  X, ncomp = 8, nlandmarks = 40, preproc = center(), method = "double", l = 20,
  kernel_func = gaussian_kernel
)
scores_rbf <- project(fit_rbf, X[1:10, ])

Test coverage for Nyström

This package includes unit tests that validate Nyström correctness:

See tests/testthat/test_nystrom.R in the source for details.

Cross‑validated kernel RMSE: Nyström vs PCA

Below we compare PCA and Nyström (linear kernel) via a kernel‑space RMSE on held‑out folds. For a test block with preprocessed data X_test_c, the true kernel is K_true = X_test_c %*% t(X_test_c). With a rank‑k model, the approximated kernel is K_hat = S %*% t(S), where S are the component scores returned by project().

set.seed(202)

# PCA fit function (reuses earlier fit_pca)
fit_pca <- function(train_data, ncomp) {
  pca(train_data, ncomp = ncomp, preproc = center())
}

# Nyström fit function (standard variant, linear kernel, no RSpectra needed for small data)
fit_nystrom <- function(train_data, ncomp, nlandmarks = 50) {
  nystrom_approx(train_data, ncomp = ncomp, nlandmarks = nlandmarks,
                 preproc = center(), method = "standard", use_RSpectra = FALSE)
}

# Kernel-space RMSE metric for a test fold
measure_kernel_rmse <- function(model, test_data) {
  S <- project(model, test_data)
  K_hat <- S %*% t(S)
  Xc <- reprocess(model, test_data)
  K_true <- Xc %*% t(Xc)
  tibble::tibble(kernel_rmse = sqrt(mean((K_hat - K_true)^2)))
}

# Use a local copy of iris data and local folds for this comparison
X_cv <- as.matrix(scale(iris[, 1:4]))
K <- 5
fold_ids <- sample(rep(1:K, length.out = nrow(X_cv)))
folds_cv <- lapply(1:K, function(k) list(
  train = which(fold_ids != k),
  test  = which(fold_ids == k)
))

# Compare for k = 3 components
k_sel <- 3
cv_pca_kernel <- cv_generic(
  X_cv, folds_cv,
  .fit_fun = fit_pca,
  .measure_fun = measure_kernel_rmse,
  fit_args = list(ncomp = k_sel)
)

cv_nys_kernel <- cv_generic(
  X_cv, folds_cv,
  .fit_fun = fit_nystrom,
  .measure_fun = measure_kernel_rmse,
  fit_args = list(ncomp = k_sel, nlandmarks = 50)
)

metrics_pca <- dplyr::bind_rows(cv_pca_kernel$metrics)
metrics_nys <- dplyr::bind_rows(cv_nys_kernel$metrics)
rmse_pca <- mean(metrics_pca$kernel_rmse, na.rm = TRUE)
rmse_nys <- mean(metrics_nys$kernel_rmse, na.rm = TRUE)

cv_summary <- data.frame(
  method = c("PCA", "Nyström (linear)"),
  kernel_rmse = c(rmse_pca, rmse_nys)
)
print(cv_summary)
#>             method kernel_rmse
#> 1              PCA  0.02153248
#> 2 Nyström (linear)  0.02266859

# Simple bar plot
ggplot(cv_summary, aes(x = method, y = kernel_rmse, fill = method)) +
  geom_col(width = 0.6) +
  guides(fill = "none") +
  labs(title = "Cross‑validated kernel RMSE (k = 3)", y = "Kernel RMSE", x = NULL)

Summary

The multivarious CV framework provides: - Easy cross-validation for any dimensionality reduction method - Flexible metric calculation - Parallel execution support - Tidy output format for easy analysis

Use it to make informed decisions about model complexity and ensure your dimensionality reduction generalizes well to new data.