params <- list(family = "red") ## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(collapse = TRUE, comment = "#>", fig.width=6, fig.height=4) # Assuming necessary multivarious functions are loaded # e.g., via devtools::load_all() or library(multivarious) library(multivarious) library(tibble) # For summary output ## ----quick_start-------------------------------------------------------------- set.seed(1) X <- matrix(rnorm(30*15), 30, 15) # raw data, 30 samples, 15 variables p1 <- pca(X, ncomp = 8) # first reduction: 15 -> 8 components p2 <- pca(scores(p1), ncomp = 7) # second reduction: 8 -> 4 components # Compose the two projectors pipe <- compose_partial_projector( first = p1, second = p2) print(pipe) # Project original data through the entire pipeline S <- project(pipe, X) # 30 × 4 scores – as if the two steps were one dim(S) # Get a summary of the pipeline stages summary(pipe) ## ----partial_projection_examples---------------------------------------------- # Example 1: Use only variables 1:5 for the *first* PCA stage. # The second PCA stage receives the full 8 components from the (partial) first stage. S15 <- partial_project(pipe, X[, 1:5, drop=FALSE], colind = 1:5) cat("Dimensions after partial projection (cols 1:5 in first stage):", dim(S15), "\n") # Example 2: Multi-stage pipeline (conceptual) # Imagine a 3-stage pipeline: wavelets -> PCA (block1) -> PCA (global) # pipe2 <- wavelet_projector(...) %>>% # pca(..., ncomp = 10) %>>% # pca(..., ncomp = 3) # To focus on coefficients 12:20 *after* the wavelet step (i.e., input to stage 2): # S_sel <- partial_project(pipe2, X, # Assuming X is appropriate input for wavelets # colind = list(NULL, 12:20, NULL)) # Note: The indices in the list always refer to the dimensions *entering* that specific stage. ## ----reconstruction----------------------------------------------------------- # Reconstruct original data from the final scores 'S' X_hat <- reconstruct(pipe, S) cat("Dimensions of reconstructed data:", dim(X_hat), "\n") # Check reconstruction accuracy # Note: Since the pipeline involves dimensionality reduction (15 -> 8 -> 4), # reconstruction will not be exact. The error reflects the information lost. max_reconstruction_error <- max(abs(X - X_hat)) cat("Maximum absolute reconstruction error:", format(max_reconstruction_error, digits=3), "\n") # stopifnot(max_reconstruction_error < 1e-5) # Removed: This check is too strict for lossy reconstruction # Get the overall coefficient matrix (p_orig x q_final) V <- coef(pipe) cat("Dimensions of overall coefficient matrix:", dim(V), "\n") # Get the overall pseudo-inverse matrix (q_final x p_orig) Vplus <- inverse_projection(pipe) cat("Dimensions of overall inverse projection matrix:", dim(Vplus), "\n") ## ----helper_pipe, eval=FALSE-------------------------------------------------- # # pipe3 <- pca1 %>>% pca2 %>>% pca3