Implements the most common Gaussian process (GP) models using Laplace and expectation propagation (EP) approximations, maximum marginal likelihood (or posterior) inference for the hyperparameters, and sparse approximations for larger datasets.
| Version: | 0.13.0 | 
| Depends: | R (≥ 3.4.0) | 
| Imports: | Matrix, methods, Rcpp | 
| LinkingTo: | Rcpp, RcppArmadillo | 
| Suggests: | testthat, knitr, rmarkdown, ggplot2 | 
| Published: | 2022-08-24 | 
| DOI: | 10.32614/CRAN.package.gplite | 
| Author: | Juho Piironen [cre, aut] | 
| Maintainer: | Juho Piironen <juho.t.piironen at gmail.com> | 
| License: | GPL-3 | 
| NeedsCompilation: | yes | 
| Materials: | README, NEWS | 
| CRAN checks: | gplite results | 
| Reference manual: | gplite.html , gplite.pdf | 
| Vignettes: | gplite Quickstart (source, R code) | 
| Package source: | gplite_0.13.0.tar.gz | 
| Windows binaries: | r-devel: gplite_0.13.0.zip, r-release: gplite_0.13.0.zip, r-oldrel: gplite_0.13.0.zip | 
| macOS binaries: | r-release (arm64): gplite_0.13.0.tgz, r-oldrel (arm64): gplite_0.13.0.tgz, r-release (x86_64): gplite_0.13.0.tgz, r-oldrel (x86_64): gplite_0.13.0.tgz | 
| Old sources: | gplite archive | 
Please use the canonical form https://CRAN.R-project.org/package=gplite to link to this page.