
Package ‘ggtreebar’
May 16, 2025

Title Make Treemap Bar Charts with 'ggplot2'

Version 0.1.0

Description Provides 'ggplot2' geoms analogous to 'geom_col()' and 'geom_bar()'
that allow for treemaps using 'treemapify' nested within each bar segment.
Also provides geometries for subgroup bordering and text annotation.

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.3.2

Imports grid, ggplot2, treemapify, ggfittext, dplyr, cli

URL https://github.com/hrryt/ggtreebar,

https://hrryt.github.io/ggtreebar/

BugReports https://github.com/hrryt/ggtreebar/issues

Depends R (>= 4.1.0)

NeedsCompilation no

Author Harry Thompson [aut, cre, cph]

Maintainer Harry Thompson <harry@mayesfield.uk>

Repository CRAN

Date/Publication 2025-05-16 10:00:01 UTC

Contents

geom_treebar . 2
geom_treebar_subgroup_border . 5
geom_treebar_subgroup_text . 8

Index 12

1

https://github.com/hrryt/ggtreebar
https://hrryt.github.io/ggtreebar/
https://github.com/hrryt/ggtreebar/issues

2 geom_treebar

geom_treebar Treemap Bar Charts

Description

ggplot2 geoms analogous to ggplot2::geom_bar() and ggplot2::geom_col() that allow for
treemaps like with treemapify::geom_treemap() nested within each bar segment.

Usage

geom_treebar(
mapping = NULL,
data = NULL,
stat = "count",
position = "stack",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
fixed = NULL,
layout = "squarified",
start = "bottomleft",
...

)

geom_treecol(
mapping = NULL,
data = NULL,
stat = "identity",
position = "stack",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
fixed = NULL,
layout = "squarified",
start = "bottomleft",
...

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

geom_treebar 3

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat Override the default connection between geom_treebar() and stat_count().

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

fixed Deprecated. Use layout = "fixed" instead. Will be removed in later versions.

layout The layout algorithm, one of either ’squarified’ (the default), ’scol’, ’srow’ or
’fixed’. See Details for full details on the different layout algorithms.

start The corner in which to start placing the tiles. One of ’bottomleft’ (the default),
’topleft’, ’topright’ or ’bottomright’.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

4 geom_treebar

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

Details

data is split by all aesthetics except for the subgroup aesthetics.

A treemap is then drawn using treemapify::treemapify() from each section of the data, inher-
iting its aesthetics, and using the subgroup aesthetics to determine hierarchy.

Value

A ggplot2::layer().

Aesthetics

geom_treebar() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• alpha

• colour

• fill

• linetype

• linewidth

• subgroup

• subgroup2

• subgroup3

geom_treecol() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• alpha

• colour

• fill

• linetype

• linewidth

• subgroup

• subgroup2

geom_treebar_subgroup_border 5

• subgroup3

Learn more about setting these aesthetics in vignette("ggplot2-specs").

stat_count() understands the following aesthetics (required aesthetics are in bold):

• x or y
• group

• weight

Learn more about setting these aesthetics in vignette("ggplot2-specs").

Computed variables

These are calculated by the ’stat’ part of layers and can be accessed with delayed evaluation.

• after_stat(count)
number of points in bin.

• after_stat(prop)
groupwise proportion

See Also

geom_treebar_subgroup_border(), geom_treebar_subgroup_text().

Examples

library(ggplot2)
ggplot(diamonds, aes(clarity, fill = cut, subgroup = color)) +

geom_treebar()
ggplot(diamonds, aes(y = cut, fill = color, subgroup = clarity)) +

geom_treebar(position = "dodge")

geom_treebar_subgroup_border

Subgroup Borders for Treemap Bar Charts

Description

Add borders to subgroups of a treemap bar chart generated by geom_treebar() or geom_treecol().

Usage

geom_treebar_subgroup_border(
mapping = NULL,
data = NULL,
stat = "count",
position = "stack",
na.rm = FALSE,

6 geom_treebar_subgroup_border

show.legend = NA,
inherit.aes = TRUE,
fixed = NULL,
layout = "squarified",
start = "bottomleft",
level = "subgroup",
...

)

geom_treecol_subgroup_border(
mapping = NULL,
data = NULL,
stat = "identity",
position = "stack",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
fixed = NULL,
layout = "squarified",
start = "bottomleft",
level = "subgroup",
...

)

geom_treebar_subgroup2_border(...)

geom_treecol_subgroup2_border(...)

geom_treebar_subgroup3_border(...)

geom_treecol_subgroup3_border(...)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-

geom_treebar_subgroup_border 7

ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

fixed Deprecated. Use layout = 'fixed' instead. Will be removed in later versions.

layout The layout algorithm, one of either ’squarified’ (the default), ’scol’, ’srow’ or
’fixed’. See Details for full details on the different layout algorithms.

start The corner in which to start placing the tiles. One of ’bottomleft’ (the default),
’topleft’, ’topright’ or ’bottomright’.

level One of ’subgroup’, ’subgroup2’ or ’subgroup3’, giving the subgrouping level for
which to draw borders. It is recommended to use the aliases geom_treemap_subgroup2_border()
and geom_treemap_subgroup3_border() instead of this argument.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

8 geom_treebar_subgroup_text

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

Details

These functions take the same aesthetic mappings as geom_treebar() and geom_treecol(), and
are to be used in conjunction with them, ensuring that arguments like position match where sup-
plied.

Value

A ggplot2::layer().

See Also

geom_treebar(), geom_treebar_subgroup_text().

Examples

library(ggplot2)
ggplot(diamonds, aes(y = clarity, fill = color, subgroup = color, subgroup2 = cut)) +

geom_treebar(position = "dodge") +
geom_treebar_subgroup_border(position = "dodge", linewidth = 2)

geom_treebar_subgroup_text

Subgroup Text Labels for Treemap Bar Charts

Description

Add text labels to subgroups of a treemap bar chart generated by geom_treebar() or geom_treecol().

Usage

geom_treebar_subgroup_text(
mapping = NULL,
data = NULL,
stat = "count",
position = "stack",

geom_treebar_subgroup_text 9

na.rm = FALSE,
show.legend = FALSE,
inherit.aes = TRUE,
padding.x = grid::unit(1, "mm"),
padding.y = grid::unit(1, "mm"),
place = "bottom",
min.size = 4,
grow = FALSE,
reflow = FALSE,
fixed = NULL,
layout = "squarified",
start = "bottomleft",
level = "subgroup",
...

)

geom_treecol_subgroup_text(
mapping = NULL,
data = NULL,
stat = "identity",
position = "stack",
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = TRUE,
padding.x = grid::unit(1, "mm"),
padding.y = grid::unit(1, "mm"),
place = "bottom",
min.size = 4,
grow = FALSE,
reflow = FALSE,
fixed = NULL,
layout = "squarified",
start = "bottomleft",
level = "subgroup",
...

)

geom_treebar_subgroup2_text(...)

geom_treecol_subgroup2_text(...)

geom_treebar_subgroup3_text(...)

geom_treecol_subgroup3_text(...)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of

10 geom_treebar_subgroup_text

the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat Override the default connection between geom_treebar() and stat_count().

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

padding.x, padding.y
grid::unit() object, giving horizontal or vertical padding between text and
edge of tile. Defaults to 1 mm.

place Where inside the box to place the text. Default is bottom; other options are
topleft, top, topright, etc.

min.size Minimum font size, in points. If provided, text that would need to be shrunk
below this size to fit the box will not be drawn. Defaults to 4 pt.

grow If TRUE, text will be grown as well as shrunk to fill the box.

reflow If TRUE, text will be reflowed (wrapped) to better fit the box.

fixed Deprecated. Use layout = "fixed" instead. Will be removed in later versions.

layout The layout algorithm, one of either ’squarified’ (the default), ’scol’, ’srow’ or
’fixed’. See Details for full details on the different layout algorithms.

start The corner in which to start placing the tiles. One of ’bottomleft’ (the default),
’topleft’, ’topright’ or ’bottomright’.

geom_treebar_subgroup_text 11

level One of ’subgroup’, ’subgroup2’ or ’subgroup3’, giving the subgrouping level for
which to draw text labels. It is recommended to use the aliases geom_treemap_subgroup2_text()
and geom_treemap_subgroup3_text() instead of this argument.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

Details

These functions take the same aesthetic mappings as geom_treebar() and geom_treecol(), and
are to be used in conjunction with them, ensuring that arguments like position match where sup-
plied.

Value

A ggplot2::layer().

See Also

geom_treebar(), geom_treebar_subgroup_border().

Examples

library(ggplot2)
ggplot(diamonds, aes(y = clarity, fill = cut, subgroup = color)) +

geom_treebar(position = "dodge") +
geom_treebar_subgroup_text(position = "dodge")

Index

∗ datasets
geom_treebar, 2
geom_treebar_subgroup_border, 5
geom_treebar_subgroup_text, 8

aes(), 2, 6, 9

borders(), 3, 7, 10

delayed evaluation, 5

fortify(), 3, 6, 10

geom_treebar, 2
geom_treebar(), 5, 8, 11
geom_treebar_subgroup2_border

(geom_treebar_subgroup_border),
5

geom_treebar_subgroup2_text
(geom_treebar_subgroup_text), 8

geom_treebar_subgroup3_border
(geom_treebar_subgroup_border),
5

geom_treebar_subgroup3_text
(geom_treebar_subgroup_text), 8

geom_treebar_subgroup_border, 5
geom_treebar_subgroup_border(), 5, 11
geom_treebar_subgroup_text, 8
geom_treebar_subgroup_text(), 5, 8
geom_treecol (geom_treebar), 2
geom_treecol(), 5, 8, 11
geom_treecol_subgroup2_border

(geom_treebar_subgroup_border),
5

geom_treecol_subgroup2_text
(geom_treebar_subgroup_text), 8

geom_treecol_subgroup3_border
(geom_treebar_subgroup_border),
5

geom_treecol_subgroup3_text
(geom_treebar_subgroup_text), 8

geom_treecol_subgroup_border
(geom_treebar_subgroup_border),
5

geom_treecol_subgroup_text
(geom_treebar_subgroup_text), 8

GeomTreecol (geom_treebar), 2
GeomTreecolSubgroupBorder

(geom_treebar_subgroup_border),
5

GeomTreecolSubgroupText
(geom_treebar_subgroup_text), 8

ggplot(), 2, 6, 10
ggplot2::geom_bar(), 2
ggplot2::geom_col(), 2
ggplot2::layer(), 4, 8, 11

key glyphs, 4, 8, 11

layer position, 3, 7, 10
layer stat, 7
layer(), 3, 4, 7, 8, 11

treemapify::geom_treemap(), 2
treemapify::treemapify(), 4

12

	geom_treebar
	geom_treebar_subgroup_border
	geom_treebar_subgroup_text
	Index

