--- title: "Quick start" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Quick start} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>", message = FALSE ) ``` This quick-start guide demonstrates how to generate multi-cluster high-dimensional data. We simulate three distinct $4\text{-}D$ clusters with different shapes, scales, and rotations. ```{r setup} library(cardinalR) library(langevitour) ``` Each cluster can be rotated in a different way across specified $2\text{-}D$ planes. ```{r} rotations_4d <- list( cluster1 = list( list(plane = c(1, 2), angle = 60), # Rotation in the (1, 2) plane list(plane = c(3, 4), angle = 90) # Rotation in the (3, 4) plane ), cluster2 = list( list(plane = c(1, 3), angle = 30) # Rotation in the (1, 3) plane ), cluster3 = list( list(plane = c(2, 4), angle = 45) # Rotation in the (2, 4) plane ) ) ``` We use `gen_multicluster()` to generate 3 clusters with varying shapes and positions in $4\text{-}D$ space. ```{r} clust_data <- gen_multicluster(n = c(200, 300, 500), p = 4, k = 3, loc = matrix(c( 0, 0, 0, 0, 5, 9, 0, 0, 3, 4, 10, 7 ), nrow = 3, byrow = TRUE), scale = c(2, 5, 1), shape = c("gaussian", "cone", "unifcube"), rotation = rotations_4d, is_bkg = FALSE ) langevitour(clust_data |> dplyr::select(-cluster), pointSize = 2, group = clust_data$cluster) ```