
allocation: Exact Optimal Allocation
Algorithms for Stratified Sampling

Andrew M. Raim

When sampling from a finite population, the 𝑁 units are often partitioned into strata based on prede-
termined criteria. The survey designer must determine the number of units to sample from each strata.
The allocation package implements several algorithms from Wright (2012) and Wright (2017) which
reconsider Neyman’s classic method of allocating a given sample size 𝑛 among such strata (Neyman 1934).
These algorithms provide optimal integer-valued solutions to minimize the variance of an estimator for
the population total.

Table of contents

Disclaimer and Acknowledgments 1

1 Introduction 2

2 Overview of the Package 2

3 Examples 4
3.1 Allocation for Fixed Overall Sample Size . 4
3.2 Allocation for a Desired Precision . 6

References 7

Disclaimer and Acknowledgments

This document is released to inform interested parties of ongoing research and to encourage discussion of work in
progress. Any views expressed are those of the author and not those of the U.S. Census Bureau.

Thanks to Tommy Wright (U.S. Census Bureau) for discussions which prompted to the development of this package,
and for providing a review of the materials.

Although there are no guarantees of correctness of the allocation package, reasonable efforts will be made to
address shortcomings. Comments, questions, corrections, and possible improvements can be communicated through
the Github repository for the package (https://github.com/andrewraim/allocation).

Document was compiled 2025-08-22 04:54:12 EDT and corresponds to allocation version 0.1.0. Contact: andrew.raim@gmail.com,
Center for Statistical Research & Methodology, U.S. Census Bureau, Washington, DC, 20233, U.S.A.

1

https://github.com/andrewraim/allocation
mailto:andrew.raim@gmail.com

1 Introduction

Suppose there are 𝑁 units in a population which is partitioned into 𝐻 strata of known sizes 𝑁1, … , 𝑁𝐻 . A sample
consisting of 𝑛1, … , 𝑛𝐻 units will be taken from the corresponding strata with 𝑛ℎ ≥ 1 for all ℎ. Therefore, the overall
sample size will be 𝑛 = ∑𝐻

ℎ=1 𝑛ℎ. Denote the population mean and variance for the ℎth stratum as

̄𝑌ℎ =
𝑁ℎ

∑
𝑗=1

𝑌ℎ𝑗 and 𝑆2
ℎ = 1

𝑁ℎ − 1
𝑁ℎ

∑
𝑗=1

(𝑌ℎ𝑗 − ̄𝑌ℎ)2,

where 𝑌ℎ𝑗 is the value of the variable of interest for the 𝑗th unit. To estimate the population total of 𝑇𝑌 = ∑𝐻
ℎ=1 𝑁ℎ ̄𝑌ℎ

from the sampled units, consider the estimator

̂𝑇𝑌 =
𝐻

∑
ℎ=1

𝑁ℎ ̄𝑦ℎ,

where ̄𝑦ℎ is the sample mean from the ℎth strata. The variance of ̂𝑇𝑌 is

Var(̂𝑇𝑌) =
𝐻

∑
ℎ=1

𝑁ℎ
𝑛ℎ

(𝑁ℎ − 𝑛ℎ)𝑆2
ℎ, (1)

Neyman’s allocation method minimizes (1) with respect to 𝑛1, … , 𝑛𝐻 as the optimization variables, subject to the
constraint 𝑛 = ∑𝐻

ℎ=1 𝑛ℎ for a given 𝑛. Regarding the variables 𝑛1, … , 𝑛𝐻 as real numbers, Lagrange’s method can
be used to obtain the solution

𝑛ℎ = 𝑛 𝑁ℎ𝑆ℎ
∑𝐻

ℓ=1 𝑁ℓ𝑆ℓ
, ℎ = 1, … , 𝐻.

Rounding is then used to obtain integer-valued 𝑛1, … , 𝑛𝐻 which are needed in practice; however, rounding may
not yield an optimal integer solution. The allocation methods in Wright (2012) and Wright (2017) address this by
directly obtaining integer solutions. Exploiting the structure of (1), units are iteratively placed into strata to yield
an optimal integer solution. Additionally, these methods support nonnegative real-valued bounds 𝑎ℎ, 𝑏ℎ such that
𝑎ℎ ≤ 𝑛ℎ ≤ 𝑏ℎ, 𝑎ℎ > 0 and 𝑏ℎ ≤ 𝑁ℎ. We consider two methods in particular. Algorithm III of Wright (2017) assumes
a target sample size of 𝑛0 and finds an optimal allocation such that ∑𝐻

ℎ=1 𝑛ℎ = 𝑛0. Algorithm IV of Wright (2017)
assumes a target variance assumes a target variance 𝑉0 and finds an optimal allocation with the smallest overall
sample size ∑𝐻

ℎ=1 𝑛ℎ such that (1) is no larger than 𝑉0. Algorithms III and IV of Wright (2017) are summarized as
Algorithms 1 and 2 here, respectively. See Wright (2017) for further details.

The remainder of the vignette proceeds as follows. Section 2 gives an overview of the allocation package and its
interface. Section 3 demonstrates use of the package on several examples from Wright (2017).

2 Overview of the Package

The allocation package makes use of the Rmpfr package to handle very large numbers while avoiding loss of
precision. Furthermore, users may consider encode such values with Rmpfr rather than standard floating point
numbers; especially for numbers such as target variances which may be very large.

library(Rmpfr)

The following functions implement Neyman’s allocation method, Algorithm 1, and Algorithm 2, respectively.

2

Algorithm 1 Optimal allocation for a fixed overall sample size.
1: inputs
2: 𝑛0: desired overall sample size.
3: 𝑁1, … , 𝑁𝐻 : population sizes.
4: 𝑆1, … , 𝑆𝐻 : standard deviations.
5: 𝑎1, … , 𝑎𝐻 : lower bounds.
6: 𝑏1, … , 𝑏𝐻 : upper bounds.
7: end inputs
8: Let 𝑛ℎ = 𝑎ℎ for ℎ = 1, … , 𝐻.
9: while ∑𝐻

ℎ=1 𝑛ℎ < 𝑛0 do
10: 𝑃ℎ ← 𝑁ℎ𝑆ℎ/√𝑛ℎ(𝑛ℎ + 1) if 𝑛ℎ + 1 ≤ 𝑏ℎ, 𝑃ℎ ← 0 otherwise, for ℎ = 1, … , 𝐻.
11: ℎ ← argmax(𝑃1, … , 𝑃𝐻).
12: 𝑛ℎ ← 𝑛ℎ + 1.
13: end while
14: return 𝑛1, … , 𝑛𝐻 .

Algorithm 2 Optimal allocation for a desired precision.
1: inputs
2: 𝑉0: desired variance target.
3: 𝑁1, … , 𝑁𝐻 : population sizes.
4: 𝑆1, … , 𝑆𝐻 : standard deviations.
5: 𝑎1, … , 𝑎𝐻 : lower bounds.
6: 𝑏1, … , 𝑏𝐻 : upper bounds.
7: end inputs
8: Let 𝑛ℎ = 𝑎ℎ for ℎ = 1, … , 𝐻.
9: Let 𝑉 = ∑𝐻

ℎ=1 𝑁ℎ(𝑁ℎ − 𝑛ℎ)𝑆2
ℎ/𝑛ℎ

10: while 𝑉 > 𝑉0 and ∑𝐻
ℎ=1 𝑛ℎ < ∑𝐻

ℎ=1 𝑁ℎ do
11: 𝑃ℎ ← 𝑁ℎ𝑆ℎ/√𝑛ℎ(𝑛ℎ + 1) if 𝑛ℎ + 1 ≤ 𝑏ℎ, 𝑃ℎ ← 0 otherwise, for ℎ = 1, … , 𝐻.
12: ℎ ← argmax(𝑃1, … , 𝑃𝐻).
13: 𝑛ℎ ← 𝑛ℎ + 1.
14: 𝑉 ← ∑𝐻

ℎ=1 𝑁ℎ(𝑁ℎ − 𝑛ℎ)𝑆2
ℎ/𝑛ℎ

15: end while
16: return 𝑛1, … , 𝑛𝐻 .

3

allocate_neyman =
function (n0, N, S, control = allocation_control())

allocate_fixn =
function (n0, N, S, lo = NULL, hi = NULL, control = allocation_control())

allocate_prec =
function (v0, N, S, lo = NULL, hi = NULL, control = allocation_control())

The arguments are as follows:

• n0: target sample size 𝑛0,
• v0: target variance 𝑉0,
• N: the vector (𝑁1, … , 𝑁𝐻),
• S: the vector (𝑆1, … , 𝑆𝐻),
• lo: the vector (𝑎1, … , 𝑎𝐻),
• hi: the vector (𝑏1, … , 𝑏𝐻).

The argument control contains additional arguments and can be created with the following function. See its manual
page for further information.

print_interface(allocation_control)

allocation_control =
function (verbose = FALSE, bits = 256, tol = 1e-10, digits = 4)

Several accessors are provided to operate on results from the allocation methods.

out = allocate_fixn(n0, N, S)
allocation(out) ## Extract allocation (n[1], ..., n[H]).
print(out) ## Print table with allocation and other information.

3 Examples

3.1 Allocation for Fixed Overall Sample Size

Here we demonstrate Algorithm 1 using an example in Wright (2017).

N = c(47, 61, 41)
S = sqrt(c(100, 36, 16))
lo = c(1,2,3)
hi = c(5,6,4)
n0 = 10

out1 = allocate_fixn(n0, N, S, lo, hi)
print(out1)

4

lo hi n
1 1 5 4
2 2 6 3
3 3 4 3
--
Made 4 selections
Target n: 10
Achieved v: 101,290.3333

Note that rows labels are the stratum indices 1, … , 𝐻. The columns lo, hi, and n correspond to the vectors 𝑎1, … , 𝑎𝐻 ,
𝑏1, … , 𝑏𝐻 , and 𝑛1, … , 𝑛𝐻 , respectively. To see details justifying each selection, run allocate_fixn with the verbose
option enabled.

out1 = allocate_fixn(v0, N, S, lo, hi, control = allocation_control(verbose = TRUE))

Let us compare the above results to Neyman allocation.

out2 = allocate_neyman(n0, N, S)
print(out2)

N S n
1 47 10.000 4.7000
2 61 6.0000 3.6600
3 41 4.0000 1.6400
--
v: 92,448.0000

The number of decimal points in the output can be changed using the control object.

print(out2, control = allocation_control(digits = 2))

N S n
1 47 10.0 4.70
2 61 6.00 3.66
3 41 4.00 1.64
--
v: 92,448.00

Extract the allocation as a numeric vector using the allocation accessor function.

allocation(out1) ## allocate_fixn result

[1] 4 3 3

allocation(out2) ## allocate_neyman result

[1] 4.70 3.66 1.64

5

3.2 Allocation for a Desired Precision

Run Algorithm 2 using an example in Wright (2017). Since our target variance v0 is a very large number, we pass
it as an mpfr object to avoid loss of precision.

H = 10
v0 = mpfr(388910760, 256)^2
N = c(819, 672, 358, 196, 135, 83, 53, 40, 35, 13)
lo = c(3, 3, 3, 3, 3, 3, 3, 3, 3, 13)
S = c(330000, 518000, 488000, 634000, 1126000, 2244000, 2468000, 5869000,

29334000, 1233311000)

print(data.frame(N, S, lo))

N S lo
1 819 330000 3
2 672 518000 3
3 358 488000 3
4 196 634000 3
5 135 1126000 3
6 83 2244000 3
7 53 2468000 3
8 40 5869000 3
9 35 29334000 3
10 13 1233311000 13

out1 = allocate_prec(v0, N, S, lo)
print(out1)

lo hi n
1 3 819 4
2 3 672 5
3 3 358 3
4 3 196 3
5 3 135 3
6 3 83 3
7 3 53 3
8 3 40 3
9 3 35 13
10 13 13 13
--
Target v0: 151,251,579,243,777,600.0000
Achieved v: 149,400,057,961,841,025.6410

To see details justifying each selection, we can run allocate_prec with the verbose option enabled.

out1 = allocate_prec(v0, N, S, lo, control = allocation_control(verbose = TRUE))

Compare the above results to Neyman allocation. Here, we first need to compute a target sample size. This is done
with a given cv and revenue data; see Wright (2017) for details. We also exclude the 10th stratum from the allocation
procedure, as it is a certainty stratum; its allocation is considered fixed at 13.

6

cv = 0.042
rev = mpfr(9259780000, 256)
n = sum(N[-10] * S[-10])^2 / ((cv * rev)^2 + sum(N[-10] * S[-10]^2))
out2 = allocate_neyman(n, N[-10], S[-10])
print(out2)

N S n
1 819 330,000.0000 3.8874
2 672 518,000.0000 5.0068
3 358 488,000.0000 2.5128
4 196 634,000.0000 1.7873
5 135 1,126,000.0000 2.1864
6 83 2,244,000.0000 2.6789
7 53 2,468,000.0000 1.8814
8 40 5,869,000.0000 3.3766
9 35 29,334,000.0000 14.7672
--
v: 151,251,579,243,777,625.5132

Extract the final allocations.

allocation(out1) ## allocate_prec result

[1] 4 5 3 3 3 3 3 3 13 13

allocation(out2) ## allocate_neyman result

[1] 3.887378 5.006774 2.512822 1.787328 2.186408 2.678921 1.881395
[8] 3.376627 14.767205

References

Neyman, Jerzy. 1934. “On the Two Different Aspects of the Representative Method: The Method of Stratified
Sampling and the Method of Purposive Selection.” Journal of the Royal Statistical Society 97 (4): 558–625.
http://www.jstor.org/stable/2342192.

Wright, Tommy. 2012. “The Equivalence of Neyman Optimum Allocation for Sampling and Equal Proportions for
Apportioning the U.S. House of Representatives.” The American Statistician 66 (4): 217–24. https://doi.org/10.
1080/00031305.2012.733679.

———. 2017. “Exact Optimal Sample Allocation: More Efficient Than Neyman.” Statistics & Probability Letters
129: 50–57. https://doi.org/10.1016/j.spl.2017.04.026.

7

http://www.jstor.org/stable/2342192
https://doi.org/10.1080/00031305.2012.733679
https://doi.org/10.1080/00031305.2012.733679
https://doi.org/10.1016/j.spl.2017.04.026

	Disclaimer and Acknowledgments
	Introduction
	Overview of the Package
	Examples
	Allocation for Fixed Overall Sample Size
	Allocation for a Desired Precision

	References

