ex, ey, and ez in the stokes package
ex <- e(1,3)
ey <- e(2,3)
ez <- e(3,3)Convenience objects ex, ey, and ez are discussed here. Elementary forms dx, dy and dz are discussed in dx.Rmd.
The dual basis to \((dx,dy,dz)\) is, depending on context, written \((e_x,e_y,e_z)\), or \((i,j,k)\) or sometimes \(\left(\frac{\partial}{\partial x},\frac{\partial}{\partial x},\frac{\partial}{\partial x}\right)\). Here they are denoted ex, ey, and ez (rather than i,j,k which cause problems in the context of R).
fdx <- as.function(dx)
fdy <- as.function(dy)
fdz <- as.function(dz)
matrix(c(
fdx(ex),fdx(ey),fdx(ez),
fdy(ex),fdy(ey),fdy(ez),
fdz(ex),fdz(ey),fdz(ez)
),3,3)## [,1] [,2] [,3]
## [1,] 1 0 0
## [2,] 0 1 0
## [3,] 0 0 1
Above we see that the matrix \(dx^i\frac{\partial}{\partial x^j}\) is the identity, showing that ex, ey, ez are indeed conjugate to \(dx,dy,dz\).
Following lines create exeyez.rda, residing in the data/ directory of the package.
save(ex,ey,ez,file="exeyez.rda")