The traineR package seeks to unify the different ways of creating predictive models and their different predictive formats. It includes methods such as K-Nearest Neighbors, Decision Trees, ADA Boosting, Extreme Gradient Boosting, Random Forest, Neural Networks, Deep Learning, Support Vector Machines, Bayesian, Linear Discriminant Analysis, Quadratic Discriminant Analysis and Logical Regression.
The main idea of the package is that all predictions can be execute using a standard syntax, also that all predictive methods can be used in the same way by default, for example, that all packages are use classification in their default invocation and all methods use a formula to determine the predictor variables (independent variables) and the response variable.
For the following examples we will use the Puromycin dataset:
| conc | rate | state | 
|---|---|---|
| 0.02 | 76 | treated | 
| 0.02 | 47 | treated | 
| 0.06 | 97 | treated | 
| 0.06 | 107 | treated | 
| 0.11 | 123 | treated | 
| 0.11 | 139 | treated | 
| 0.22 | 159 | treated | 
| 0.22 | 152 | treated | 
| 0.56 | 191 | treated | 
| 0.56 | 201 | treated | 
n <- seq_len(nrow(Puromycin))
.sample <- sample(n, length(n) * 0.7)
data.train <- Puromycin[.sample,]
data.test  <- Puromycin[-.sample,]Modeling:
#> 
#> Call:  glm(formula = state ~ ., family = binomial, data = data.train)
#> 
#> Coefficients:
#> (Intercept)         conc         rate  
#>     2.29849      2.55722     -0.02734  
#> 
#> Degrees of Freedom: 15 Total (i.e. Null);  13 Residual
#> Null Deviance:       21.93 
#> Residual Deviance: 20.26     AIC: 26.26Prediction as probability:
Note: the result is always a matrix.
#>        treated untreated
#> [1,] 0.6863659 0.3136341
#> [2,] 0.8163233 0.1836767
#> [3,] 0.8538404 0.1461596
#> [4,] 0.2778341 0.7221659
#> [5,] 0.4612626 0.5387374
#> [6,] 0.6374826 0.3625174
#> [7,] 0.6432216 0.3567784Prediction as classification:
Note: the result is always a factor.
#> [1] treated   treated   treated   untreated untreated treated   treated  
#> Levels: treated untreatedConfusion Matrix
#>            prediction
#> real        treated untreated
#>   treated         3         0
#>   untreated       2         2Some Rates:
#> 
#> Confusion Matrix:
#>            prediction
#> real        treated untreated
#>   treated         3         0
#>   untreated       2         2
#> 
#> Overall Accuracy: 0.7143
#> Overall Error:    0.2857
#> 
#> Category Accuracy:
#> 
#>       treated    untreated
#>      1.000000     0.500000Modeling:
#> Call:
#> ada(state ~ ., data = data.train, iter = 200)
#> 
#> Loss: exponential Method: discrete   Iteration: 200 
#> 
#> Final Confusion Matrix for Data:
#>            Final Prediction
#> True value  treated
#>   treated         9
#>   untreated       7
#> 
#> Train Error: 0.438 
#> 
#> Out-Of-Bag Error:  0.438  iteration= 6 
#> 
#> Additional Estimates of number of iterations:
#> 
#> train.err1 train.kap1 
#>          1          1Prediction as probability:
#>      treated untreated
#> [1,]  0.5625    0.4375
#> [2,]  0.5625    0.4375
#> [3,]  0.5625    0.4375
#> [4,]  0.5625    0.4375
#> [5,]  0.5625    0.4375
#> [6,]  0.5625    0.4375
#> [7,]  0.5625    0.4375Prediction as classification:
#> [1] treated treated treated treated treated treated treated
#> Levels: treated untreatedConfusion Matrix:
#>            prediction
#> real        treated untreated
#>   treated         3         0
#>   untreated       4         0Some Rates:
#> 
#> Confusion Matrix:
#>            prediction
#> real        treated untreated
#>   treated         3         0
#>   untreated       4         0
#> 
#> Overall Accuracy: 0.4286
#> Overall Error:    0.5714
#> 
#> Category Accuracy:
#> 
#>       treated    untreated
#>      1.000000     0.000000For the following examples we will use the iris dataset:
| Sepal.Length | Sepal.Width | Petal.Length | Petal.Width | Species | 
|---|---|---|---|---|
| 5.1 | 3.5 | 1.4 | 0.2 | setosa | 
| 4.9 | 3.0 | 1.4 | 0.2 | setosa | 
| 4.7 | 3.2 | 1.3 | 0.2 | setosa | 
| 4.6 | 3.1 | 1.5 | 0.2 | setosa | 
| 5.0 | 3.6 | 1.4 | 0.2 | setosa | 
| 5.4 | 3.9 | 1.7 | 0.4 | setosa | 
| 4.6 | 3.4 | 1.4 | 0.3 | setosa | 
| 5.0 | 3.4 | 1.5 | 0.2 | setosa | 
| 4.4 | 2.9 | 1.4 | 0.2 | setosa | 
| 4.9 | 3.1 | 1.5 | 0.1 | setosa | 
Modeling:
#> n= 112 
#> 
#> node), split, n, loss, yval, (yprob)
#>       * denotes terminal node
#> 
#> 1) root 112 72 setosa (0.35714286 0.30357143 0.33928571)  
#>   2) Petal.Length< 2.5 40  0 setosa (1.00000000 0.00000000 0.00000000) *
#>   3) Petal.Length>=2.5 72 34 virginica (0.00000000 0.47222222 0.52777778)  
#>     6) Petal.Width< 1.75 37  4 versicolor (0.00000000 0.89189189 0.10810811) *
#>     7) Petal.Width>=1.75 35  1 virginica (0.00000000 0.02857143 0.97142857) *Prediction as probability:
#>     setosa versicolor virginica
#> 1        1 0.00000000 0.0000000
#> 13       1 0.00000000 0.0000000
#> 16       1 0.00000000 0.0000000
#> 25       1 0.00000000 0.0000000
#> 28       1 0.00000000 0.0000000
#> 37       1 0.00000000 0.0000000
#> 40       1 0.00000000 0.0000000
#> 41       1 0.00000000 0.0000000
#> 45       1 0.00000000 0.0000000
#> 48       1 0.00000000 0.0000000
#> 51       0 0.89189189 0.1081081
#> 54       0 0.89189189 0.1081081
#> 62       0 0.89189189 0.1081081
#> 63       0 0.89189189 0.1081081
#> 64       0 0.89189189 0.1081081
#> 67       0 0.89189189 0.1081081
#> 68       0 0.89189189 0.1081081
#> 80       0 0.89189189 0.1081081
#> 82       0 0.89189189 0.1081081
#> 84       0 0.89189189 0.1081081
#> 85       0 0.89189189 0.1081081
#> 87       0 0.89189189 0.1081081
#> 89       0 0.89189189 0.1081081
#> 96       0 0.89189189 0.1081081
#> 98       0 0.89189189 0.1081081
#> 99       0 0.89189189 0.1081081
#> 102      0 0.02857143 0.9714286
#> 105      0 0.02857143 0.9714286
#> 115      0 0.02857143 0.9714286
#> 119      0 0.02857143 0.9714286
#> 122      0 0.02857143 0.9714286
#> 123      0 0.02857143 0.9714286
#> 130      0 0.89189189 0.1081081
#> 132      0 0.02857143 0.9714286
#> 133      0 0.02857143 0.9714286
#> 143      0 0.02857143 0.9714286
#> 144      0 0.02857143 0.9714286
#> 147      0 0.02857143 0.9714286Prediction as classification:
#>  [1] setosa     setosa     setosa     setosa     setosa     setosa    
#>  [7] setosa     setosa     setosa     setosa     versicolor versicolor
#> [13] versicolor versicolor versicolor versicolor versicolor versicolor
#> [19] versicolor versicolor versicolor versicolor versicolor versicolor
#> [25] versicolor versicolor virginica  virginica  virginica  virginica 
#> [31] virginica  virginica  versicolor virginica  virginica  virginica 
#> [37] virginica  virginica 
#> Levels: setosa versicolor virginicaConfusion Matrix:
#>             prediction
#> real         setosa versicolor virginica
#>   setosa         10          0         0
#>   versicolor      0         16         0
#>   virginica       0          1        11Some Rates:
#> 
#> Confusion Matrix:
#>             prediction
#> real         setosa versicolor virginica
#>   setosa         10          0         0
#>   versicolor      0         16         0
#>   virginica       0          1        11
#> 
#> Overall Accuracy: 0.9737
#> Overall Error:    0.0263
#> 
#> Category Accuracy:
#> 
#>        setosa   versicolor    virginica
#>      1.000000     1.000000     0.916667The model still supports the functions of the original package.
library(rpart.plot)
prp(model, extra = 104, branch.type = 2, 
    box.col = c("pink", "palegreen3", "cyan")[model$frame$yval])Modeling:
#> 
#> Naive Bayes Classifier for Discrete Predictors
#> 
#> Call:
#> naiveBayes.default(x = X, y = Y, laplace = laplace)
#> 
#> A-priori probabilities:
#> Y
#>     setosa versicolor  virginica 
#>  0.3571429  0.3035714  0.3392857 
#> 
#> Conditional probabilities:
#>             Sepal.Length
#> Y                [,1]      [,2]
#>   setosa     4.985000 0.3591657
#>   versicolor 5.970588 0.5357122
#>   virginica  6.576316 0.5748956
#> 
#>             Sepal.Width
#> Y                [,1]      [,2]
#>   setosa     3.405000 0.3815958
#>   versicolor 2.764706 0.3227555
#>   virginica  3.000000 0.3162278
#> 
#>             Petal.Length
#> Y                [,1]      [,2]
#>   setosa     1.450000 0.1617215
#>   versicolor 4.285294 0.4513497
#>   virginica  5.507895 0.5042423
#> 
#>             Petal.Width
#> Y                [,1]      [,2]
#>   setosa     0.247500 0.1085747
#>   versicolor 1.344118 0.1909961
#>   virginica  2.015789 0.2899453Prediction as probability:
#>              setosa   versicolor    virginica
#>  [1,]  1.000000e+00 7.400932e-20 1.348206e-26
#>  [2,]  1.000000e+00 4.184387e-20 4.935605e-27
#>  [3,]  1.000000e+00 5.230150e-18 3.146672e-24
#>  [4,]  1.000000e+00 1.524602e-15 4.584825e-22
#>  [5,]  1.000000e+00 4.502547e-19 1.163711e-25
#>  [6,]  1.000000e+00 1.736558e-19 4.793530e-26
#>  [7,]  1.000000e+00 5.572007e-19 1.011311e-25
#>  [8,]  1.000000e+00 3.632105e-19 1.925656e-26
#>  [9,]  1.000000e+00 2.107296e-13 4.139813e-20
#> [10,]  1.000000e+00 1.071259e-19 5.345710e-27
#> [11,] 1.233478e-117 7.785007e-01 2.214993e-01
#> [12,]  8.276105e-76 9.999735e-01 2.646935e-05
#> [13,]  6.198830e-93 9.958479e-01 4.152140e-03
#> [14,]  1.002777e-66 9.999891e-01 1.094249e-05
#> [15,] 2.942568e-114 9.784854e-01 2.151463e-02
#> [16,] 1.807114e-106 9.894179e-01 1.058214e-02
#> [17,]  1.094481e-69 9.999583e-01 4.167560e-05
#> [18,]  1.538602e-45 9.999980e-01 2.046171e-06
#> [19,]  9.157277e-53 9.999979e-01 2.053595e-06
#> [20,] 8.534847e-146 5.564907e-01 4.435093e-01
#> [21,] 5.590446e-106 9.923191e-01 7.680851e-03
#> [22,] 1.065671e-120 7.657408e-01 2.342592e-01
#> [23,]  3.449775e-79 9.997358e-01 2.642305e-04
#> [24,]  3.617648e-80 9.997401e-01 2.598548e-04
#> [25,]  1.748106e-90 9.984078e-01 1.592201e-03
#> [26,]  1.317590e-31 9.999999e-01 1.317255e-07
#> [27,] 1.121179e-161 2.414187e-02 9.758581e-01
#> [28,] 6.179955e-231 1.712775e-07 9.999998e-01
#> [29,] 2.812357e-196 6.926661e-07 9.999993e-01
#> [30,]  0.000000e+00 1.576614e-12 1.000000e+00
#> [31,] 3.234047e-155 1.432243e-02 9.856776e-01
#> [32,] 6.697641e-296 1.959515e-09 1.000000e+00
#> [33,] 3.417133e-198 7.641346e-04 9.992359e-01
#> [34,] 5.500206e-271 1.110922e-09 1.000000e+00
#> [35,] 1.365737e-216 1.148364e-06 9.999989e-01
#> [36,] 1.121179e-161 2.414187e-02 9.758581e-01
#> [37,] 7.996794e-247 3.380471e-09 1.000000e+00
#> [38,] 6.813941e-158 2.673432e-02 9.732657e-01Prediction as classification:
#>  [1] setosa     setosa     setosa     setosa     setosa     setosa    
#>  [7] setosa     setosa     setosa     setosa     versicolor versicolor
#> [13] versicolor versicolor versicolor versicolor versicolor versicolor
#> [19] versicolor versicolor versicolor versicolor versicolor versicolor
#> [25] versicolor versicolor virginica  virginica  virginica  virginica 
#> [31] virginica  virginica  virginica  virginica  virginica  virginica 
#> [37] virginica  virginica 
#> Levels: setosa versicolor virginicaConfusion Matrix:
#>             prediction
#> real         setosa versicolor virginica
#>   setosa         10          0         0
#>   versicolor      0         16         0
#>   virginica       0          0        12Some Rates:
#> 
#> Confusion Matrix:
#>             prediction
#> real         setosa versicolor virginica
#>   setosa         10          0         0
#>   versicolor      0         16         0
#>   virginica       0          0        12
#> 
#> Overall Accuracy: 1.0000
#> Overall Error:    0.0000
#> 
#> Category Accuracy:
#> 
#>        setosa   versicolor    virginica
#>      1.000000     1.000000     1.000000Modeling:
#> Call:
#> lda(Species ~ ., data = data.train)
#> 
#> Prior probabilities of groups:
#>     setosa versicolor  virginica 
#>  0.3571429  0.3035714  0.3392857 
#> 
#> Group means:
#>            Sepal.Length Sepal.Width Petal.Length Petal.Width
#> setosa         4.985000    3.405000     1.450000    0.247500
#> versicolor     5.970588    2.764706     4.285294    1.344118
#> virginica      6.576316    3.000000     5.507895    2.015789
#> 
#> Coefficients of linear discriminants:
#>                    LD1        LD2
#> Sepal.Length  1.124712  0.5022016
#> Sepal.Width   1.421003 -2.4568406
#> Petal.Length -2.672942  0.5448688
#> Petal.Width  -2.604451 -2.4383341
#> 
#> Proportion of trace:
#>   LD1   LD2 
#> 0.993 0.007Prediction as probability:
#>           setosa   versicolor    virginica
#> 1   1.000000e+00 4.279885e-26 5.307384e-48
#> 13  1.000000e+00 4.688591e-22 2.619221e-43
#> 16  1.000000e+00 3.122947e-32 6.757260e-55
#> 25  1.000000e+00 7.147402e-18 8.032096e-37
#> 28  1.000000e+00 2.303507e-25 4.658727e-47
#> 37  1.000000e+00 3.183836e-29 1.865653e-52
#> 40  1.000000e+00 3.747875e-24 1.645712e-45
#> 41  1.000000e+00 9.095636e-26 2.656868e-47
#> 45  1.000000e+00 4.025196e-20 5.016116e-39
#> 48  1.000000e+00 1.677369e-21 5.934792e-42
#> 51  4.344294e-21 9.999623e-01 3.773942e-05
#> 54  2.453863e-25 9.997945e-01 2.054896e-04
#> 62  7.822648e-23 9.995399e-01 4.601252e-04
#> 63  1.700777e-20 9.999996e-01 3.632865e-07
#> 64  1.327702e-27 9.917009e-01 8.299119e-03
#> 67  6.386433e-28 9.585298e-01 4.147022e-02
#> 68  5.255689e-19 9.999993e-01 7.417301e-07
#> 80  5.915717e-13 1.000000e+00 3.949975e-09
#> 82  8.477967e-18 9.999999e-01 1.380672e-07
#> 84  8.319874e-38 4.957339e-02 9.504266e-01
#> 85  6.534139e-29 8.923705e-01 1.076295e-01
#> 87  2.563251e-24 9.991232e-01 8.767892e-04
#> 89  6.056125e-21 9.999467e-01 5.331421e-05
#> 96  1.287091e-20 9.999774e-01 2.263433e-05
#> 98  3.209382e-21 9.999763e-01 2.372830e-05
#> 99  1.435623e-11 1.000000e+00 2.855331e-09
#> 102 4.065940e-44 3.298961e-04 9.996701e-01
#> 105 4.119364e-53 4.170138e-07 9.999996e-01
#> 115 1.741312e-51 5.128539e-07 9.999995e-01
#> 119 8.184961e-68 2.919340e-10 1.000000e+00
#> 122 5.000649e-43 2.970267e-04 9.997030e-01
#> 123 6.677163e-58 2.075292e-07 9.999998e-01
#> 130 2.325154e-38 4.624754e-02 9.537525e-01
#> 132 4.215852e-43 1.614612e-04 9.998385e-01
#> 133 3.249585e-52 1.095243e-06 9.999989e-01
#> 143 4.065940e-44 3.298961e-04 9.996701e-01
#> 144 1.332725e-52 3.137510e-07 9.999997e-01
#> 147 1.176505e-40 6.848661e-03 9.931513e-01Prediction as classification:
#>  [1] setosa     setosa     setosa     setosa     setosa     setosa    
#>  [7] setosa     setosa     setosa     setosa     versicolor versicolor
#> [13] versicolor versicolor versicolor versicolor versicolor versicolor
#> [19] versicolor virginica  versicolor versicolor versicolor versicolor
#> [25] versicolor versicolor virginica  virginica  virginica  virginica 
#> [31] virginica  virginica  virginica  virginica  virginica  virginica 
#> [37] virginica  virginica 
#> Levels: setosa versicolor virginicaConfusion Matrix:
#>             prediction
#> real         setosa versicolor virginica
#>   setosa         10          0         0
#>   versicolor      0         15         1
#>   virginica       0          0        12Some Rates:
#> 
#> Confusion Matrix:
#>             prediction
#> real         setosa versicolor virginica
#>   setosa         10          0         0
#>   versicolor      0         15         1
#>   virginica       0          0        12
#> 
#> Overall Accuracy: 0.9737
#> Overall Error:    0.0263
#> 
#> Category Accuracy:
#> 
#>        setosa   versicolor    virginica
#>      1.000000     0.937500     1.000000Modeling:
#> Call:
#> qda(Species ~ ., data = data.train)
#> 
#> Prior probabilities of groups:
#>     setosa versicolor  virginica 
#>  0.3571429  0.3035714  0.3392857 
#> 
#> Group means:
#>            Sepal.Length Sepal.Width Petal.Length Petal.Width
#> setosa         4.985000    3.405000     1.450000    0.247500
#> versicolor     5.970588    2.764706     4.285294    1.344118
#> virginica      6.576316    3.000000     5.507895    2.015789Prediction as probability:
#>            setosa   versicolor    virginica
#> 1    1.000000e+00 6.691672e-32 1.889822e-56
#> 13   1.000000e+00 4.502161e-25 1.643751e-45
#> 16   1.000000e+00 2.425866e-44 9.946646e-77
#> 25   1.000000e+00 1.846038e-22 7.222161e-41
#> 28   1.000000e+00 2.263734e-31 1.405378e-55
#> 37   1.000000e+00 1.066101e-34 1.642074e-61
#> 40   1.000000e+00 2.223760e-29 1.409863e-52
#> 41   1.000000e+00 2.574092e-30 7.078165e-55
#> 45   1.000000e+00 5.261433e-25 1.362316e-47
#> 48   1.000000e+00 5.965990e-25 9.832492e-46
#> 51   3.913327e-93 9.999983e-01 1.748560e-06
#> 54   1.132001e-65 9.957950e-01 4.205039e-03
#> 62   6.799811e-76 9.996645e-01 3.354597e-04
#> 63   1.586686e-60 9.999626e-01 3.741195e-05
#> 64   2.841930e-97 9.922291e-01 7.770865e-03
#> 67   3.382059e-92 9.774238e-01 2.257615e-02
#> 68   3.965797e-62 9.999593e-01 4.067484e-05
#> 80   2.706100e-39 1.000000e+00 2.529603e-08
#> 82   2.922149e-48 9.999955e-01 4.460501e-06
#> 84  1.063813e-125 3.546163e-02 9.645384e-01
#> 85   1.169232e-93 9.200247e-01 7.997532e-02
#> 87   1.016187e-96 9.999161e-01 8.390841e-05
#> 89   2.201163e-68 9.999721e-01 2.794462e-05
#> 96   6.738690e-70 9.999703e-01 2.968347e-05
#> 98   4.789342e-75 9.999871e-01 1.287034e-05
#> 99   4.964949e-27 9.999997e-01 3.192563e-07
#> 102 7.054324e-137 4.787216e-05 9.999521e-01
#> 105 6.250126e-188 1.197738e-07 9.999999e-01
#> 115 6.000194e-160 6.444145e-15 1.000000e+00
#> 119 1.837646e-268 2.990105e-10 1.000000e+00
#> 122 2.283010e-131 1.810862e-06 9.999982e-01
#> 123 2.854321e-243 1.329319e-07 9.999999e-01
#> 130 9.978738e-165 1.315865e-02 9.868413e-01
#> 132 2.577367e-212 3.871752e-02 9.612825e-01
#> 133 3.618142e-175 1.809676e-08 1.000000e+00
#> 143 7.054324e-137 4.787216e-05 9.999521e-01
#> 144 7.744264e-197 5.679973e-08 9.999999e-01
#> 147 1.109338e-127 7.516888e-05 9.999248e-01Prediction as classification:
#>  [1] setosa     setosa     setosa     setosa     setosa     setosa    
#>  [7] setosa     setosa     setosa     setosa     versicolor versicolor
#> [13] versicolor versicolor versicolor versicolor versicolor versicolor
#> [19] versicolor virginica  versicolor versicolor versicolor versicolor
#> [25] versicolor versicolor virginica  virginica  virginica  virginica 
#> [31] virginica  virginica  virginica  virginica  virginica  virginica 
#> [37] virginica  virginica 
#> Levels: setosa versicolor virginicaConfusion Matrix:
#>             prediction
#> real         setosa versicolor virginica
#>   setosa         10          0         0
#>   versicolor      0         15         1
#>   virginica       0          0        12Some Rates:
#> 
#> Confusion Matrix:
#>             prediction
#> real         setosa versicolor virginica
#>   setosa         10          0         0
#>   versicolor      0         15         1
#>   virginica       0          0        12
#> 
#> Overall Accuracy: 0.9737
#> Overall Error:    0.0263
#> 
#> Category Accuracy:
#> 
#>        setosa   versicolor    virginica
#>      1.000000     0.937500     1.000000Modeling:
#> 
#> Call:
#>  randomForest(formula = Species ~ ., data = data.train, importance = TRUE) 
#>                Type of random forest: classification
#>                      Number of trees: 500
#> No. of variables tried at each split: 2
#> 
#>         OOB estimate of  error rate: 5.36%
#> Confusion matrix:
#>            setosa versicolor virginica class.error
#> setosa         40          0         0  0.00000000
#> versicolor      0         31         3  0.08823529
#> virginica       0          3        35  0.07894737Prediction as probability:
#>     setosa versicolor virginica
#> 1    1.000      0.000     0.000
#> 13   1.000      0.000     0.000
#> 16   0.990      0.010     0.000
#> 25   1.000      0.000     0.000
#> 28   1.000      0.000     0.000
#> 37   0.960      0.040     0.000
#> 40   1.000      0.000     0.000
#> 41   1.000      0.000     0.000
#> 45   1.000      0.000     0.000
#> 48   1.000      0.000     0.000
#> 51   0.000      0.982     0.018
#> 54   0.000      0.986     0.014
#> 62   0.002      0.990     0.008
#> 63   0.000      0.942     0.058
#> 64   0.000      0.976     0.024
#> 67   0.010      0.972     0.018
#> 68   0.000      1.000     0.000
#> 80   0.000      0.998     0.002
#> 82   0.000      1.000     0.000
#> 84   0.000      0.190     0.810
#> 85   0.042      0.896     0.062
#> 87   0.000      0.988     0.012
#> 89   0.010      0.988     0.002
#> 96   0.008      0.990     0.002
#> 98   0.000      0.994     0.006
#> 99   0.002      0.966     0.032
#> 102  0.000      0.066     0.934
#> 105  0.000      0.000     1.000
#> 115  0.000      0.054     0.946
#> 119  0.000      0.006     0.994
#> 122  0.002      0.192     0.806
#> 123  0.000      0.000     1.000
#> 130  0.000      0.322     0.678
#> 132  0.000      0.000     1.000
#> 133  0.000      0.000     1.000
#> 143  0.000      0.066     0.934
#> 144  0.000      0.000     1.000
#> 147  0.000      0.054     0.946Prediction as classification:
#>  [1] setosa     setosa     setosa     setosa     setosa     setosa    
#>  [7] setosa     setosa     setosa     setosa     versicolor versicolor
#> [13] versicolor versicolor versicolor versicolor versicolor versicolor
#> [19] versicolor virginica  versicolor versicolor versicolor versicolor
#> [25] versicolor versicolor virginica  virginica  virginica  virginica 
#> [31] virginica  virginica  virginica  virginica  virginica  virginica 
#> [37] virginica  virginica 
#> Levels: setosa versicolor virginicaConfusion Matrix:
#>             prediction
#> real         setosa versicolor virginica
#>   setosa         10          0         0
#>   versicolor      0         15         1
#>   virginica       0          0        12Some Rates:
#> 
#> Confusion Matrix:
#>             prediction
#> real         setosa versicolor virginica
#>   setosa         10          0         0
#>   versicolor      0         15         1
#>   virginica       0          0        12
#> 
#> Overall Accuracy: 0.9737
#> Overall Error:    0.0263
#> 
#> Category Accuracy:
#> 
#>        setosa   versicolor    virginica
#>      1.000000     0.937500     1.000000The model still supports the functions of the original package.
Modeling:
#> 
#> Call:
#> kknn::train.kknn(formula = Species ~ ., data = data.train)
#> 
#> Type of response variable: nominal
#> Minimal misclassification: 0.05357143
#> Best kernel: optimal
#> Best k: 6Prediction as probability:
#>       setosa versicolor  virginica
#>  [1,]      1 0.00000000 0.00000000
#>  [2,]      1 0.00000000 0.00000000
#>  [3,]      1 0.00000000 0.00000000
#>  [4,]      1 0.00000000 0.00000000
#>  [5,]      1 0.00000000 0.00000000
#>  [6,]      1 0.00000000 0.00000000
#>  [7,]      1 0.00000000 0.00000000
#>  [8,]      1 0.00000000 0.00000000
#>  [9,]      1 0.00000000 0.00000000
#> [10,]      1 0.00000000 0.00000000
#> [11,]      0 1.00000000 0.00000000
#> [12,]      0 1.00000000 0.00000000
#> [13,]      0 0.88155533 0.11844467
#> [14,]      0 0.88155533 0.11844467
#> [15,]      0 0.88155533 0.11844467
#> [16,]      0 1.00000000 0.00000000
#> [17,]      0 1.00000000 0.00000000
#> [18,]      0 1.00000000 0.00000000
#> [19,]      0 1.00000000 0.00000000
#> [20,]      0 0.08866211 0.91133789
#> [21,]      0 0.97854845 0.02145155
#> [22,]      0 1.00000000 0.00000000
#> [23,]      0 1.00000000 0.00000000
#> [24,]      0 1.00000000 0.00000000
#> [25,]      0 1.00000000 0.00000000
#> [26,]      0 1.00000000 0.00000000
#> [27,]      0 0.00000000 1.00000000
#> [28,]      0 0.00000000 1.00000000
#> [29,]      0 0.00000000 1.00000000
#> [30,]      0 0.00000000 1.00000000
#> [31,]      0 0.02145155 0.97854845
#> [32,]      0 0.00000000 1.00000000
#> [33,]      0 0.08866211 0.91133789
#> [34,]      0 0.00000000 1.00000000
#> [35,]      0 0.00000000 1.00000000
#> [36,]      0 0.00000000 1.00000000
#> [37,]      0 0.00000000 1.00000000
#> [38,]      0 0.17779340 0.82220660Prediction as classification:
#>  [1] setosa     setosa     setosa     setosa     setosa     setosa    
#>  [7] setosa     setosa     setosa     setosa     versicolor versicolor
#> [13] versicolor versicolor versicolor versicolor versicolor versicolor
#> [19] versicolor virginica  versicolor versicolor versicolor versicolor
#> [25] versicolor versicolor virginica  virginica  virginica  virginica 
#> [31] virginica  virginica  virginica  virginica  virginica  virginica 
#> [37] virginica  virginica 
#> Levels: setosa versicolor virginicaConfusion Matrix:
#>             prediction
#> real         setosa versicolor virginica
#>   setosa         10          0         0
#>   versicolor      0         15         1
#>   virginica       0          0        12Some Rates:
#> 
#> Confusion Matrix:
#>             prediction
#> real         setosa versicolor virginica
#>   setosa         10          0         0
#>   versicolor      0         15         1
#>   virginica       0          0        12
#> 
#> Overall Accuracy: 0.9737
#> Overall Error:    0.0263
#> 
#> Category Accuracy:
#> 
#>        setosa   versicolor    virginica
#>      1.000000     0.937500     1.000000Modeling:
#> # weights:  163
#> initial  value 129.434889 
#> iter  10 value 11.287791
#> iter  20 value 0.777812
#> iter  30 value 0.003981
#> final  value 0.000060 
#> converged#> a 4-20-3 network with 163 weights
#> inputs: Sepal.Length Sepal.Width Petal.Length Petal.Width 
#> output(s): Species 
#> options were - softmax modellingPrediction as probability:
#>           setosa   versicolor    virginica
#> 1   9.999986e-01 1.383479e-06 3.359731e-19
#> 13  9.999986e-01 1.383636e-06 3.360458e-19
#> 16  9.999986e-01 1.383395e-06 3.359270e-19
#> 25  9.999977e-01 2.308408e-06 5.338393e-19
#> 28  9.999986e-01 1.383463e-06 3.359620e-19
#> 37  9.999986e-01 1.383435e-06 3.359494e-19
#> 40  9.999986e-01 1.383488e-06 3.359739e-19
#> 41  9.999986e-01 1.383499e-06 3.359850e-19
#> 45  9.999986e-01 1.400473e-06 3.396849e-19
#> 48  9.999986e-01 1.383654e-06 3.360625e-19
#> 51  1.115595e-17 1.000000e+00 3.859792e-16
#> 54  6.704809e-19 1.000000e+00 3.966570e-17
#> 62  7.120670e-18 1.000000e+00 2.691104e-16
#> 63  1.926870e-18 1.000000e+00 9.406836e-17
#> 64  8.197192e-19 1.000000e+00 4.702770e-17
#> 67  9.644722e-19 1.000000e+00 5.356778e-17
#> 68  7.710825e-18 1.000000e+00 2.870531e-16
#> 80  4.798027e-17 1.000000e+00 1.245300e-15
#> 82  9.190669e-18 1.000000e+00 3.305507e-16
#> 84  6.998721e-29 9.783636e-28 1.000000e+00
#> 85  7.113058e-19 1.000000e+00 4.661924e-17
#> 87  3.406634e-18 1.000000e+00 1.488599e-16
#> 89  1.106838e-17 1.000000e+00 3.837079e-16
#> 96  9.812261e-18 1.000000e+00 3.483441e-16
#> 98  7.046697e-18 1.000000e+00 2.669149e-16
#> 99  6.250023e-17 1.000000e+00 1.540263e-15
#> 102 5.051812e-29 6.016841e-27 1.000000e+00
#> 105 4.590677e-29 1.074873e-26 1.000000e+00
#> 115 4.563998e-29 1.059431e-26 1.000000e+00
#> 119 4.294868e-29 1.509395e-26 1.000000e+00
#> 122 5.654063e-29 3.201470e-27 1.000000e+00
#> 123 4.399819e-29 1.411425e-26 1.000000e+00
#> 130 1.137869e-28 1.792370e-28 1.000000e+00
#> 132 1.302765e-28 3.242616e-29 1.000000e+00
#> 133 4.528324e-29 1.149565e-26 1.000000e+00
#> 143 5.051812e-29 6.016841e-27 1.000000e+00
#> 144 5.035766e-29 6.572968e-27 1.000000e+00
#> 147 6.053025e-29 2.281264e-27 1.000000e+00Prediction as classification:
#>  [1] setosa     setosa     setosa     setosa     setosa     setosa    
#>  [7] setosa     setosa     setosa     setosa     versicolor versicolor
#> [13] versicolor versicolor versicolor versicolor versicolor versicolor
#> [19] versicolor virginica  versicolor versicolor versicolor versicolor
#> [25] versicolor versicolor virginica  virginica  virginica  virginica 
#> [31] virginica  virginica  virginica  virginica  virginica  virginica 
#> [37] virginica  virginica 
#> Levels: setosa versicolor virginicaConfusion Matrix:
#>             prediction
#> real         setosa versicolor virginica
#>   setosa         10          0         0
#>   versicolor      0         15         1
#>   virginica       0          0        12Some Rates:
#> 
#> Confusion Matrix:
#>             prediction
#> real         setosa versicolor virginica
#>   setosa         10          0         0
#>   versicolor      0         15         1
#>   virginica       0          0        12
#> 
#> Overall Accuracy: 0.9737
#> Overall Error:    0.0263
#> 
#> Category Accuracy:
#> 
#>        setosa   versicolor    virginica
#>      1.000000     0.937500     1.000000Modeling:
model <- train.neuralnet(Species~., data.train, hidden = c(5, 7, 6),
                         linear.output = FALSE, threshold = 0.01, stepmax = 1e+06)
summary(model)#>                     Length Class      Mode    
#> call                  7    -none-     call    
#> response            336    -none-     logical 
#> covariate           448    -none-     numeric 
#> model.list            2    -none-     list    
#> err.fct               1    -none-     function
#> act.fct               1    -none-     function
#> linear.output         1    -none-     logical 
#> data                  5    data.frame list    
#> exclude               0    -none-     NULL    
#> net.result            1    -none-     list    
#> weights               1    -none-     list    
#> generalized.weights   1    -none-     list    
#> startweights          1    -none-     list    
#> result.matrix       139    -none-     numeric 
#> prmdt                 4    -none-     listPrediction as probability:
#>           setosa   versicolor    virginica
#> 1   1.000000e+00 3.446809e-09 9.207977e-31
#> 13  1.000000e+00 3.431848e-09 9.253007e-31
#> 16  1.000000e+00 3.464710e-09 9.154415e-31
#> 25  1.000000e+00 3.460573e-09 9.166492e-31
#> 28  1.000000e+00 3.439434e-09 9.230287e-31
#> 37  1.000000e+00 3.405075e-09 9.335313e-31
#> 40  1.000000e+00 3.439770e-09 9.229221e-31
#> 41  1.000000e+00 3.454044e-09 9.186200e-31
#> 45  1.000000e+00 3.464711e-09 9.154281e-31
#> 48  1.000000e+00 3.462756e-09 9.159953e-31
#> 51  9.056655e-21 1.000000e+00 5.242281e-13
#> 54  9.199862e-22 1.000000e+00 9.674819e-12
#> 62  1.843951e-21 1.000000e+00 2.715652e-12
#> 63  1.113558e-20 1.000000e+00 4.667777e-13
#> 64  1.017739e-23 1.000000e+00 1.054842e-09
#> 67  3.080147e-24 1.000000e+00 2.280508e-09
#> 68  1.194968e-20 1.000000e+00 3.954779e-13
#> 80  1.529933e-06 9.998006e-01 3.733476e-20
#> 82  1.367241e-20 1.000000e+00 3.509938e-13
#> 84  7.325186e-40 1.490605e-09 1.000000e+00
#> 85  1.919662e-24 1.000000e+00 3.244973e-09
#> 87  1.805485e-21 1.000000e+00 3.094284e-12
#> 89  5.810945e-21 1.000000e+00 7.608977e-13
#> 96  7.313367e-21 1.000000e+00 6.093775e-13
#> 98  6.938315e-21 1.000000e+00 7.077371e-13
#> 99  1.000000e+00 5.010612e-09 1.773402e-30
#> 102 4.169881e-43 4.300800e-13 1.000000e+00
#> 105 2.947217e-46 1.755565e-16 1.000000e+00
#> 115 1.171536e-42 7.565021e-13 1.000000e+00
#> 119 9.256015e-48 3.400952e-18 1.000000e+00
#> 122 1.832470e-40 3.287895e-10 1.000000e+00
#> 123 2.886545e-47 1.290550e-17 1.000000e+00
#> 130 1.450795e-37 4.000902e-07 9.999999e-01
#> 132 1.222779e-43 3.686602e-13 1.000000e+00
#> 133 5.054144e-46 2.750890e-16 1.000000e+00
#> 143 4.169881e-43 4.300800e-13 1.000000e+00
#> 144 2.261717e-46 1.431147e-16 1.000000e+00
#> 147 3.185724e-41 2.768763e-11 1.000000e+00Prediction as classification:
#>  [1] setosa     setosa     setosa     setosa     setosa     setosa    
#>  [7] setosa     setosa     setosa     setosa     versicolor versicolor
#> [13] versicolor versicolor versicolor versicolor versicolor versicolor
#> [19] versicolor virginica  versicolor versicolor versicolor versicolor
#> [25] versicolor setosa     virginica  virginica  virginica  virginica 
#> [31] virginica  virginica  virginica  virginica  virginica  virginica 
#> [37] virginica  virginica 
#> Levels: setosa versicolor virginicaConfusion Matrix:
#>             prediction
#> real         setosa versicolor virginica
#>   setosa         10          0         0
#>   versicolor      1         14         1
#>   virginica       0          0        12Some Rates:
#> 
#> Confusion Matrix:
#>             prediction
#> real         setosa versicolor virginica
#>   setosa         10          0         0
#>   versicolor      1         14         1
#>   virginica       0          0        12
#> 
#> Overall Accuracy: 0.9474
#> Overall Error:    0.0526
#> 
#> Category Accuracy:
#> 
#>        setosa   versicolor    virginica
#>      1.000000     0.875000     1.000000Modeling:
#> 
#> Call:
#> svm(formula = Species ~ ., data = data.train, probability = TRUE)
#> 
#> 
#> Parameters:
#>    SVM-Type:  C-classification 
#>  SVM-Kernel:  radial 
#>        cost:  1 
#> 
#> Number of Support Vectors:  47Prediction as probability:
#>          setosa  versicolor   virginica
#> 1   0.975860958 0.013757554 0.010381488
#> 13  0.968222765 0.019787248 0.011989988
#> 16  0.911034087 0.050381129 0.038584784
#> 25  0.969260887 0.018012711 0.012726402
#> 28  0.974556454 0.014977704 0.010465842
#> 37  0.968156507 0.019159888 0.012683605
#> 40  0.974464336 0.014874193 0.010661471
#> 41  0.975620430 0.013898904 0.010480665
#> 45  0.966907885 0.020991755 0.012100360
#> 48  0.970297256 0.016719339 0.012983404
#> 51  0.028534671 0.893620306 0.077845024
#> 54  0.009522061 0.943497629 0.046980311
#> 62  0.013106574 0.956087867 0.030805559
#> 63  0.020885185 0.966277260 0.012837554
#> 64  0.010694026 0.910217138 0.079088836
#> 67  0.014294620 0.903745978 0.081959402
#> 68  0.017701721 0.976563723 0.005734556
#> 80  0.024639959 0.968946465 0.006413576
#> 82  0.015993412 0.974233164 0.009773425
#> 84  0.009911426 0.239064489 0.751024085
#> 85  0.017928538 0.886676770 0.095394691
#> 87  0.017687662 0.871847924 0.110464414
#> 89  0.022392815 0.966109725 0.011497459
#> 96  0.022729064 0.968838507 0.008432430
#> 98  0.013399668 0.974466955 0.012133376
#> 99  0.048197572 0.931664546 0.020137883
#> 102 0.007959374 0.030697654 0.961342971
#> 105 0.009215605 0.002209793 0.988574602
#> 115 0.011886190 0.003735433 0.984378377
#> 119 0.056306085 0.034365448 0.909328467
#> 122 0.009643351 0.038670840 0.951685809
#> 123 0.031097542 0.026021173 0.942881286
#> 130 0.017786519 0.105533566 0.876679915
#> 132 0.032755368 0.044535218 0.922709414
#> 133 0.009636615 0.002294039 0.988069346
#> 143 0.007959374 0.030697654 0.961342971
#> 144 0.009302167 0.003272889 0.987424945
#> 147 0.010741481 0.060024226 0.929234293Prediction as classification:
#>  [1] setosa     setosa     setosa     setosa     setosa     setosa    
#>  [7] setosa     setosa     setosa     setosa     versicolor versicolor
#> [13] versicolor versicolor versicolor versicolor versicolor versicolor
#> [19] versicolor virginica  versicolor versicolor versicolor versicolor
#> [25] versicolor versicolor virginica  virginica  virginica  virginica 
#> [31] virginica  virginica  virginica  virginica  virginica  virginica 
#> [37] virginica  virginica 
#> Levels: setosa versicolor virginicaConfusion Matrix:
#>             prediction
#> real         setosa versicolor virginica
#>   setosa         10          0         0
#>   versicolor      0         15         1
#>   virginica       0          0        12Some Rates:
#> 
#> Confusion Matrix:
#>             prediction
#> real         setosa versicolor virginica
#>   setosa         10          0         0
#>   versicolor      0         15         1
#>   virginica       0          0        12
#> 
#> Overall Accuracy: 0.9737
#> Overall Error:    0.0263
#> 
#> Category Accuracy:
#> 
#>        setosa   versicolor    virginica
#>      1.000000     0.937500     1.000000Modeling:
#> ##### xgb.Booster
#> raw: 139 Kb 
#> call:
#>   xgb.train(params = params, data = train_aux, nrounds = nrounds, 
#>     watchlist = watchlist, obj = obj, feval = feval, verbose = verbose, 
#>     print_every_n = print_every_n, early_stopping_rounds = early_stopping_rounds, 
#>     maximize = maximize, save_period = save_period, save_name = save_name, 
#>     xgb_model = xgb_model, callbacks = callbacks, eval_metric = "mlogloss")
#> params (as set within xgb.train):
#>   booster = "gbtree", objective = "multi:softprob", eta = "0.3", gamma = "0", max_depth = "6", min_child_weight = "1", subsample = "1", colsample_bytree = "1", num_class = "3", eval_metric = "mlogloss", validate_parameters = "TRUE"
#> xgb.attributes:
#>   niter
#> callbacks:
#>   cb.evaluation.log()
#> # of features: 4 
#> niter: 79
#> nfeatures : 4 
#> evaluation_log:
#>     iter train_mlogloss
#>        1       0.743578
#>        2       0.532534
#> ---                    
#>       78       0.015663
#>       79       0.015611Prediction as probability:
#>             setosa  versicolor    virginica
#>  [1,] 0.9944374561 0.004435789 0.0011267414
#>  [2,] 0.9939395189 0.004433568 0.0016269000
#>  [3,] 0.9821980596 0.016689112 0.0011128737
#>  [4,] 0.9944374561 0.004435789 0.0011267414
#>  [5,] 0.9944374561 0.004435789 0.0011267414
#>  [6,] 0.9837585092 0.015126886 0.0011146417
#>  [7,] 0.9944374561 0.004435789 0.0011267414
#>  [8,] 0.9944374561 0.004435789 0.0011267414
#>  [9,] 0.9944374561 0.004435789 0.0011267414
#> [10,] 0.9944374561 0.004435789 0.0011267414
#> [11,] 0.0009844096 0.997911751 0.0011038530
#> [12,] 0.0046227896 0.989484012 0.0058931801
#> [13,] 0.0017534802 0.997382224 0.0008642558
#> [14,] 0.0026980436 0.984013975 0.0132879959
#> [15,] 0.0013079111 0.996260285 0.0024318874
#> [16,] 0.0073815910 0.988237202 0.0043811873
#> [17,] 0.0028598958 0.994277835 0.0028622176
#> [18,] 0.0028598958 0.994277835 0.0028622176
#> [19,] 0.0046227896 0.989484012 0.0058931801
#> [20,] 0.0031536364 0.014520043 0.9823263288
#> [21,] 0.0272189658 0.956625819 0.0161552429
#> [22,] 0.0010063513 0.997825563 0.0011681097
#> [23,] 0.0054605692 0.992357016 0.0021824159
#> [24,] 0.0054605692 0.992357016 0.0021824159
#> [25,] 0.0011453496 0.997244596 0.0016100713
#> [26,] 0.0163861588 0.965533018 0.0180808567
#> [27,] 0.0038726968 0.004364253 0.9917631149
#> [28,] 0.0012481194 0.003202455 0.9955494404
#> [29,] 0.0038726968 0.004364253 0.9917631149
#> [30,] 0.0004997505 0.001309848 0.9981903434
#> [31,] 0.0065130251 0.026439615 0.9670473933
#> [32,] 0.0004997505 0.001309848 0.9981903434
#> [33,] 0.0077368501 0.124345370 0.8679177165
#> [34,] 0.0013536282 0.003473172 0.9951731563
#> [35,] 0.0004507682 0.001181465 0.9983677268
#> [36,] 0.0038726968 0.004364253 0.9917631149
#> [37,] 0.0013536282 0.003473172 0.9951731563
#> [38,] 0.0012919764 0.005974662 0.9927333593Prediction as classification:
#>  [1] setosa     setosa     setosa     setosa     setosa     setosa    
#>  [7] setosa     setosa     setosa     setosa     versicolor versicolor
#> [13] versicolor versicolor versicolor versicolor versicolor versicolor
#> [19] versicolor virginica  versicolor versicolor versicolor versicolor
#> [25] versicolor versicolor virginica  virginica  virginica  virginica 
#> [31] virginica  virginica  virginica  virginica  virginica  virginica 
#> [37] virginica  virginica 
#> Levels: setosa versicolor virginicaConfusion Matrix:
#>             prediction
#> real         setosa versicolor virginica
#>   setosa         10          0         0
#>   versicolor      0         15         1
#>   virginica       0          0        12Some Rates:
#> 
#> Confusion Matrix:
#>             prediction
#> real         setosa versicolor virginica
#>   setosa         10          0         0
#>   versicolor      0         15         1
#>   virginica       0          0        12
#> 
#> Overall Accuracy: 0.9737
#> Overall Error:    0.0263
#> 
#> Category Accuracy:
#> 
#>        setosa   versicolor    virginica
#>      1.000000     0.937500     1.000000