We use the api dataset from package survey to illustrate
estimation of a population mean from a sample using a linear regression
model. First let’s estimate the population mean of the academic
performance indicator 2000 from a simple random sample,
apisrs. Using package survey’s GREG estimator (Särndal, Swensson, and Wretman 1992), we
find
library(survey)
data(api)
# define the regression model
model <- api00 ~ ell + meals + stype + hsg + col.grad + grad.sch
# compute corresponding population totals
XpopT <- colSums(model.matrix(model, apipop))
N <- XpopT[["(Intercept)"]]  # population size
# create the survey design object
des <- svydesign(ids=~1, data=apisrs, weights=~pw, fpc=~fpc)
# compute the calibration or GREG estimator
cal <- calibrate(des, formula=model, population=XpopT)
svymean(~ api00, des)  # equally weighted estimate##         mean     SE
## api00 656.58 9.2497##         mean     SE
## api00 663.86 4.1942The true population mean in this case can be obtained from the
apipop dataset:
## [1] 664.7126Note that the GREG estimate is more accurate than the simple equally weighted estimate, which is also reflected by the smaller estimated standard error of the former.
We can run the same linear model using package mcmcsae. In the next
code chunk, function create_sampler sets
up a sampler function that is used as input to function MCMCsim, which runs a
simulation to obtain draws from the posterior distribution of the model
parameters. By default three chains with independently generated
starting values are run over 1250 iterations with the first 250
discarded as burnin. As the starting values for the MCMC simulation are
randomly generated, we set a random seed for reproducibility.
The results of the simulation are subsequently summarized, and the DIC model criterion is computed. The simulation summary shows several statistics for the model parameters, including the posterior mean, standard error, quantiles, as well as the R-hat convergence diagnostic.
library(mcmcsae)
set.seed(1)
sampler <- create_sampler(model, data=apisrs)
sim <- MCMCsim(sampler, verbose=FALSE)
(summ <- summary(sim))## llh_ :
##       Mean   SD t-value   MCSE q0.05  q0.5 q0.95 n_eff R_hat
## llh_ -1104 2.12    -520 0.0418 -1108 -1104 -1101  2581     1
## 
## sigma_ :
##        Mean   SD t-value   MCSE q0.05 q0.5 q0.95 n_eff R_hat
## sigma_ 60.5 3.11    19.4 0.0631  55.5 60.4    66  2433     1
## 
## reg1 :
##                Mean     SD t-value    MCSE    q0.05    q0.5    q0.95 n_eff R_hat
## (Intercept)  778.32 24.600   31.64 0.44912  737.311  778.33 818.5935  3000 1.000
## ell           -1.72  0.298   -5.79 0.00544   -2.210   -1.72  -1.2382  3000 1.000
## meals         -1.75  0.275   -6.36 0.00502   -2.209   -1.75  -1.3115  3000 1.000
## stypeH      -108.81 14.023   -7.76 0.25603 -131.403 -108.60 -86.1115  3000 1.002
## stypeM       -59.05 12.117   -4.87 0.22122  -78.968  -59.08 -39.2607  3000 0.999
## hsg           -0.70  0.415   -1.69 0.00758   -1.408   -0.70  -0.0101  3000 1.000
## col.grad       1.22  0.487    2.51 0.00889    0.421    1.22   2.0163  3000 1.000
## grad.sch       2.20  0.501    4.39 0.00937    1.402    2.19   3.0274  2859 1.000##         DIC       p_DIC 
## 2217.368326    8.910283The output of function MCMCsim is an object of
class mcdraws. The package provides methods for the generic
functions summary, plot, predict,
residuals and fitted for this class.
To compute a model-based estimate of the population mean, we need to predict the values of the target variable for the unobserved units. Let \(U\) denote the set of population units, \(s \subset U\) the set of sample (observed) units, and let \(y_i\) denote the value of the variable of interest taken by the \(i\)th unit. The population mean of the variable of interest is \[ \bar{Y} = \frac{1}{N}\sum_{i=1}^N y_i = \frac{1}{N}\left(\sum_{i\in s} y_i + \sum_{i\in U\setminus s} y_i \right)\,. \]
Posterior draws for \(\bar{Y}\) can
be obtained by generating draws for the non-sampled population units,
summing them and adding the sample sum. This is done in the next code
chunk, where method predict is used to
generate draws from the posterior predictive distribution for the new,
unobserved, units.
m <- match(apisrs$cds, apipop$cds)  # population units in the sample
# use only a sample of 250 draws from each chain
predictions <- predict(sim, newdata=apipop[-m, ], iters=sample(1:1000, 250), show.progress=FALSE)
str(predictions)## List of 3
##  $ : num [1:250, 1:5994] 699 623 586 599 608 ...
##  $ : num [1:250, 1:5994] 704 672 619 746 692 ...
##  $ : num [1:250, 1:5994] 587 701 743 673 582 ...
##  - attr(*, "class")= chr "dc"samplesum <- sum(apisrs$api00)
summary(transform_dc(predictions, fun = function(x) (samplesum + sum(x))/N))##      Mean   SD t-value  MCSE q0.05 q0.5 q0.95 n_eff R_hat
## [1,]  664 4.12     161 0.151   657  664   671   750     1The result for the population mean can also be obtained directly (which is more efficient memory wise) by supplying the appropriate aggregation function to the prediction method:
summary(predict(sim, newdata=apipop[-m, ], fun=function(x, p) (samplesum + sum(x))/N,
                show.progress=FALSE)
)##      Mean   SD t-value  MCSE q0.05 q0.5 q0.95 n_eff R_hat
## [1,]  664 4.21     158 0.083   657  664   671  2565 0.999For any linear model one can obtain the same result more efficiently by precomputing covariate population totals. Posterior draws for \(\bar{Y}\) are then computed as
\[ \bar{Y}_r = \frac{1}{N} \left( n\bar{y} + \beta_r'(X - n\bar{x}) + e_r\right)\,, \]
where \(e_r \sim {\cal N}(0, (N-n)\sigma_r^2)\), representing the sum of \(N-n\) independent normal draws. The code to do this is
n <- nrow(apisrs)
XsamT <- colSums(model.matrix(model, apisrs))
XpopR <- matrix(XpopT - XsamT, nrow=1)
predictions <- predict(sim, X=list(reg1=XpopR), var=N-n, fun=function(x, p) (samplesum + x)/N,
                       show.progress=FALSE)
summary(predictions)##      Mean  SD t-value   MCSE q0.05 q0.5 q0.95 n_eff R_hat
## [1,]  664 4.2     158 0.0797   657  664   671  2782 0.999To compute weights corresponding to the population total:
sampler <- create_sampler(model, data=apisrs,
                          linpred=list(reg1=matrix(XpopT/N, nrow=1)),
                          compute.weights=TRUE)
sim <- MCMCsim(sampler, verbose=FALSE)
plot(weights(cal)/N, weights(sim)); abline(0, 1)## [1] 663.8594## linpred_ :
##             Mean      SD t-value      MCSE   q0.05    q0.5   q0.95 n_eff    R_hat
## linpred_ 663.792 4.35517 152.415 0.0795141 656.689 663.682 671.264  3000 0.999854Note the small difference between the weighted sample sum of the target variable and the posterior mean of the linear predictor. This is due to Monte Carlo error; the weighted sum is exact for the simple linear regression case.
One possible way to deal with outliers is to use a Student-t sampling distribution, which has fatter tails than the normal distribution. In the next example, the formula.V argument is used to add local variance parameters with inverse chi-squared distributions. The marginal sampling distribution then becomes Student-t. Here the degrees of freedom parameter is modeled, i.e. assigned a prior distribution and inferred from the data.
sampler <- create_sampler(model, formula.V=~vfac(prior=pr_invchisq(df="modeled")),
                          linpred=list(reg1=matrix(XpopR/N, nrow=1)),
                          data=apisrs, compute.weights=TRUE)
sim <- MCMCsim(sampler, n.iter=5000, burnin=1000, verbose=FALSE)
(summ <- summary(sim))## llh_ :
##       Mean   SD t-value  MCSE q0.05  q0.5 q0.95 n_eff R_hat
## llh_ -1081 8.15    -133 0.605 -1094 -1081 -1067   181  1.01
## 
## sigma_ :
##        Mean   SD t-value  MCSE q0.05 q0.5 q0.95 n_eff R_hat
## sigma_ 49.5 4.39    11.3 0.304  42.5 49.4  56.9   209  1.01
## 
## linpred_ :
##          Mean  SD t-value   MCSE q0.05 q0.5 q0.95 n_eff R_hat
## linpred_  643 3.9     165 0.0402   636  643   649  9435     1
## 
## reg1 :
##                 Mean     SD t-value    MCSE    q0.05     q0.5    q0.95 n_eff R_hat
## (Intercept)  793.917 26.129   30.38 0.37692  750.021  794.556 836.0596  4806     1
## ell           -1.485  0.362   -4.10 0.00751   -2.081   -1.491  -0.8870  2329     1
## meals         -2.083  0.358   -5.82 0.00889   -2.681   -2.077  -1.5006  1621     1
## stypeH      -105.409 12.826   -8.22 0.12953 -126.374 -105.356 -83.9533  9806     1
## stypeM       -56.837 10.943   -5.19 0.10842  -74.898  -56.824 -38.6756 10187     1
## hsg           -0.677  0.454   -1.49 0.00562   -1.419   -0.676   0.0663  6524     1
## col.grad       0.967  0.478    2.02 0.00558    0.199    0.963   1.7661  7342     1
## grad.sch       2.114  0.467    4.53 0.00508    1.346    2.110   2.8863  8440     1
## 
## vfac1_df :
##          Mean   SD t-value MCSE q0.05 q0.5 q0.95 n_eff R_hat
## vfac1_df 7.74 4.43    1.75 0.49  3.62 6.36  16.6  81.6  1.03## [[1]]
## [[1]][[1]]
## [1] 0.2642
## 
## [[1]][[2]]
## [1] 0.2692
## 
## [[1]][[3]]
## [1] 0.2648##       DIC     p_DIC 
## 2194.8432   33.7317predictions <- predict(sim, newdata=apipop[-m, ], show.progress=FALSE,
                       fun=function(x, p) (samplesum + sum(x))/N)
summary(predictions)##      Mean   SD t-value   MCSE q0.05 q0.5 q0.95 n_eff R_hat
## [1,]  664 3.98     167 0.0405   657  664   670  9659     1##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.2103  0.9318  1.0747  1.0003  1.1272  1.1665