This vignette illustrates how to estimate bid-ask spreads from open, high, low, and close prices. Let’s start by loading the package:
The package offers two ways to estimate bid-ask spreads:
edge(): designed for tidy data.spread(): designed for xts objects.The function edge() implements the efficient estimator
described in Ardia,
Guidotti, & Kroencke (2021). Open, high, low, and close prices
are to be passed as separate vectors.
The function spread() requires an xts
object containing columns named Open, High,
Low, Close and it provides additional
functionalities, such as additional estimators and rolling
estimates.
An output value of 0.01 corresponds to a spread estimate of 1%.
Examples are provided below.
The function edge() can be easily used with tidy data
and the dplyr grammar. In the following example, we
estimate bid-ask spreads for cryptocurrencies.
Download daily prices for Bitcoin and Ethereum using the crypto2 package:
library(dplyr)
library(crypto2)
df <- crypto_list(only_active=TRUE) %>%
filter(symbol %in% c("BTC", "ETH")) %>%
crypto_history(start_date = "20200101", end_date = "20221231")
#> ❯ Scraping historical crypto data
#> ❯ Processing historical crypto datahead(df)
#> # A tibble: 6 × 16
#> timestamp id slug name symbol ref_cur open high low close
#> <dttm> <int> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 2020-01-01 23:59:59 1 bitcoin Bitc… BTC USD 7195. 7254. 7175. 7200.
#> 2 2020-01-02 23:59:59 1 bitcoin Bitc… BTC USD 7203. 7212. 6935. 6985.
#> 3 2020-01-03 23:59:59 1 bitcoin Bitc… BTC USD 6984. 7414. 6915. 7345.
#> 4 2020-01-04 23:59:59 1 bitcoin Bitc… BTC USD 7345. 7427. 7310. 7411.
#> 5 2020-01-05 23:59:59 1 bitcoin Bitc… BTC USD 7410. 7544. 7401. 7411.
#> 6 2020-01-06 23:59:59 1 bitcoin Bitc… BTC USD 7410. 7782. 7409. 7769.
#> # ℹ 6 more variables: volume <dbl>, market_cap <dbl>, time_open <dttm>,
#> # time_close <dttm>, time_high <dttm>, time_low <dttm>Estimate the spread for each coin in each year:
df %>%
mutate(yyyy = format(timestamp, "%Y")) %>%
group_by(symbol, yyyy) %>%
arrange(timestamp) %>%
summarise(EDGE = edge(open, high, low, close))
#> # A tibble: 6 × 3
#> # Groups: symbol [2]
#> symbol yyyy EDGE
#> <chr> <chr> <dbl>
#> 1 BTC 2020 0.00319
#> 2 BTC 2021 0.00376
#> 3 BTC 2022 0.000200
#> 4 ETH 2020 0.00223
#> 5 ETH 2021 0.00628
#> 6 ETH 2022 0.00262xts objectsThe function spread() provides additional
functionalities for xts objects. In the
following example, we estimate bid-ask spreads for equities.
Download daily data for Microsoft (MSFT) using the quantmod package:
library(quantmod)
x <- getSymbols("MSFT", auto.assign = FALSE, start = "2019-01-01", end = "2022-12-31")
head(x)
#> MSFT.Open MSFT.High MSFT.Low MSFT.Close MSFT.Volume MSFT.Adjusted
#> 2007-01-03 29.91 30.25 29.40 29.86 76935100 21.43699
#> 2007-01-04 29.70 29.97 29.44 29.81 45774500 21.40110
#> 2007-01-05 29.63 29.75 29.45 29.64 44607200 21.27906
#> 2007-01-08 29.65 30.10 29.53 29.93 50220200 21.48725
#> 2007-01-09 30.00 30.18 29.73 29.96 44636600 21.50878
#> 2007-01-10 29.80 29.89 29.43 29.66 55017400 21.29342This is an xts object:
So we can estimate the spread with:
By default, the call above is equivalent to:
But spread() also provides additional functionalities.
For instance, estimate the spread for each month and plot the
estimates:
Or estimate the spread using a rolling window of 21 obervations:
To illustrate higher-frequency estimates, we are going to download intraday data from Alpha Vantage. You must register with Alpha Vantage in order to download their data, but the one-time registration is fast and free. Register at https://www.alphavantage.co/ to receive your key. You can set the API key globally as follows:
Download minute data for Microsoft:
x <- getSymbols(
Symbols = "MSFT",
auto.assign = FALSE,
src = "av",
periodicity = "intraday",
interval = "1min",
output.size = "full")head(x)
#> MSFT.Open MSFT.High MSFT.Low MSFT.Close MSFT.Volume
#> 2023-08-17 04:00:00 319.20 322.00 319.20 320.39 992
#> 2023-08-17 04:01:00 320.03 320.18 320.00 320.18 914
#> 2023-08-17 04:02:00 320.38 320.38 320.35 320.35 170
#> 2023-08-17 04:03:00 320.35 320.35 320.06 320.34 96
#> 2023-08-17 04:04:00 320.34 320.34 320.34 320.34 17
#> 2023-08-17 04:05:00 320.34 320.34 320.29 320.30 11Estimate the spread for each day and plot the estimates:
If you find this package useful, please star the repo!
The repository also contains implementations for Python, C++, MATLAB, and more.
Ardia, David and Guidotti, Emanuele and Kroencke, Tim Alexander, “Efficient Estimation of Bid-Ask Spreads from Open, High, Low, and Close Prices”. Available at SSRN: https://www.ssrn.com/abstract=3892335
A BibTex entry for LaTeX users is: