library(autostats)
library(workflows)
library(dplyr)
library(tune)
library(rsample)
library(hardhat)autostats provides convenient wrappers for modeling,
visualizing, and predicting using a tidy workflow. The emphasis is on
rapid iteration and quick results using an intuitive interface based off
the tibble and tidy_formula.
Set up the iris data set for modeling. Create dummies and any new columns before making the formula. This way the same formula can be use throughout the modeling and prediction process.
set.seed(34)
iris %>%
dplyr::as_tibble() %>%
framecleaner::create_dummies(remove_first_dummy = TRUE) -> iris1
#> 1 column(s) have become 2 dummy columns
iris1 %>%
tidy_formula(target = Petal.Length) -> petal_form
petal_form
#> Petal.Length ~ Sepal.Length + Sepal.Width + Petal.Width + Species_versicolor +
#> Species_virginica
#> <environment: 0x0000022b7ccbd018>Use the rsample package to split into train and validation sets.
iris1 %>%
rsample::initial_split() -> iris_split
iris_split %>%
rsample::analysis() -> iris_train
iris_split %>%
rsample::assessment() -> iris_val
iris_split
#> <Training/Testing/Total>
#> <112/38/150>Fit models to the training set using the formula to predict
Petal.Length. Variable importance using gain for each
xgboost model can be visualized.
auto_tune_xgboost returns a workflow object with tuned
parameters and requires some postprocessing to get a traind
xgb.Booster object like tidy_xgboost. Tuning
iterations set to 1 just so the vignette builds quickly.
Default is n_iter = 100
iris_train %>%
auto_tune_xgboost(formula = petal_form, n_iter = 7L, tune_method = "bayes") -> xgb_tuned_bayes
xgb_tuned_bayes %>%
parsnip::fit(iris_train) %>%
hardhat::extract_fit_engine() -> xgb_tuned_fit_bayes
xgb_tuned_fit_bayes %>%
visualize_model()xgboost also can be tuned using a grid that is created
internally using dials::grid_max_entropy. The
n_iter parameter is passed to grid_size.
Parallelization is highly effective in this method, so the default
argument parallel = TRUE is recommended.
iris_train %>%
auto_tune_xgboost(formula = petal_form, n_iter = 5L,trees = 20L, loss_reduction = 2, mtry = .5, tune_method = "grid", parallel = FALSE) -> xgb_tuned_grid
xgb_tuned_grid %>%
parsnip::fit(iris_train) %>%
parsnip::extract_fit_engine() -> xgb_tuned_fit_grid
xgb_tuned_fit_grid %>%
visualize_model()iris_train %>%
tidy_xgboost(formula = petal_form) -> xgb_base
#> accuracy tested on a validation set
#> # A tibble: 3 × 4
#> .metric .estimator .estimate target
#> <chr> <chr> <dbl> <chr>
#> 1 ccc standard 0.975 Petal.Length
#> 2 rmse standard 0.375 Petal.Length
#> 3 rsq standard 0.953 Petal.Length
xgb_base %>%
visualize_model()iris_train %>%
tidy_xgboost(petal_form,
trees = 250L,
tree_depth = 3L,
sample_size = .5,
mtry = .5,
min_n = 2) -> xgb_opt
#> accuracy tested on a validation set
#> # A tibble: 3 × 4
#> .metric .estimator .estimate target
#> <chr> <chr> <dbl> <chr>
#> 1 ccc standard 0.979 Petal.Length
#> 2 rmse standard 0.347 Petal.Length
#> 3 rsq standard 0.964 Petal.Length
xgb_opt %>%
visualize_model()automated gradient descent boosting with information-criterion heuristics that don’t need tuning
iris_train %>%
tidy_agtboost(petal_form) -> agtb
#> no dummies were createdPredictions are iteratively added to the validation data frame. The name of the column is automatically created using the models name and the prediction target.
xgb_base %>%
tidy_predict(newdata = iris_val, form = petal_form) -> iris_val2
#> created the following column: Petal.Length_preds_xgb_base
xgb_opt %>%
tidy_predict(newdata = iris_val2, petal_form) -> iris_val3
#> created the following column: Petal.Length_preds_xgb_opt
agtb %>%
tidy_predict(newdata = iris_val3, petal_form)-> iris_val4
iris_val4 %>%
names()
#> [1] "Sepal.Length" "Sepal.Width"
#> [3] "Petal.Length" "Petal.Width"
#> [5] "Species_versicolor" "Species_virginica"
#> [7] "Petal.Length_preds_xgb_base" "Petal.Length_preds_xgb_opt"
#> [9] "Petal.Length_preds_agtb"Instead of evaluationg these prediction 1 by 1, This step is
automated with eval_preds. This function is specifically
designed to evaluate predicted columns with names given from
tidy_predict.
iris_val4 %>%
eval_preds()
#> # A tibble: 9 × 5
#> .metric .estimator .estimate model target
#> <chr> <chr> <dbl> <chr> <chr>
#> 1 ccc standard 0.983 agtb Petal.Length
#> 2 ccc standard 0.980 xgb_base Petal.Length
#> 3 ccc standard 0.984 xgb_opt Petal.Length
#> 4 rmse standard 0.319 agtb Petal.Length
#> 5 rmse standard 0.352 xgb_base Petal.Length
#> 6 rmse standard 0.312 xgb_opt Petal.Length
#> 7 rsq standard 0.975 agtb Petal.Length
#> 8 rsq standard 0.969 xgb_base Petal.Length
#> 9 rsq standard 0.972 xgb_opt Petal.Lengthtidy_shap has similar syntax to
tidy_predict and can be used to get shapley values from
xgboost models on a validation set.
xgb_base %>%
tidy_shap(newdata = iris_val, form = petal_form) -> shap_listshap_list$shap_tbl
#> # A tibble: 38 × 5
#> Sepal.Length Sepal.Width Petal.Width Species_versicolor Species_virginica
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 -0.236 -0.0700 -1.97 0.0970 0.000452
#> 2 -0.284 -0.0764 -2.02 0.0954 0.000395
#> 3 -0.118 -0.0969 -2.04 0.0970 0.00137
#> 4 -0.244 -0.0778 -1.99 0.0970 0.000452
#> 5 -0.143 -0.0595 -2.08 0.0970 0.000452
#> 6 -0.281 -0.0627 -2.01 0.0970 0.000845
#> 7 -0.228 -0.0395 -1.90 0.0970 0.000856
#> 8 -0.260 -0.145 -2.04 0.0954 0.000351
#> 9 -0.223 -0.0909 -1.99 0.0954 0.000395
#> 10 -0.281 0.272 -1.86 0.0960 -0.00104
#> # … with 28 more rows
#> # ℹ Use `print(n = ...)` to see more rowsshap_list$shap_summary
#> # A tibble: 5 × 5
#> name cor var sum sum_abs
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 Petal.Width 0.955 2.29 8.43 53.7
#> 2 Sepal.Length 0.809 0.0875 -2.27 7.82
#> 3 Species_versicolor -0.934 0.0333 3.33 7.20
#> 4 Sepal.Width -0.696 0.0148 0.310 3.25
#> 5 Species_virginica -0.326 0.0000230 -0.0427 0.107shap_list$swarmplotshap_list$scatterplotsOverfittingin the base config may be related to growing deep trees.
xgb_base %>%
xgboost::xgb.plot.deepness() xgb_base %>%
xgboost::xgb.plot.deepness()
Plot the first tree in the model. The small in terminal leaves suggests
overfitting in the base model.
xgb_base %>%
xgboost::xgb.plot.tree(model = ., trees = 1)