A weather generator is a numerical tool that resamples a daily time series of precipitation, temperature, and season many times, while preserving observed or projected characteristics of importance, such as the statistics of the transition between wet and dry days. The resulting large group, or ensemble, of likely rainfall and temperature time series represents a range of possible amounts, daily patterns, and seasonality. This weather generator is, to our knowledge, novel in that it includes seasons (up to 26) in training the simulation algorithm.
The goal of wxgenR is to provide users a tool that can
simulate, with fidelity, an ensemble of precipitation and temperature
based on training data that could include, for example, station based
point measurements, grid cell values derived from models or remotely
sensed data, or basin averages. The incorporation of seasonality as a
covariate in the training algorithm allows users to examine the effects
of shifts in seasonality due to climate warming (e.g., earlier snowmelt
seasons or prolonged summer dry periods). wxgenR is an
effective and robust scenario planning tool for a wide variety of
potential futures.
wxgenRAll that is needed to run wxgenR is a single time series
of precipitation, temperature, and season. Up to 20 seasons may be
defined, but most users will likely only need two to four based on their
study region. For example, wxgenR is provided with
basin-average data from nine different GHCN gauges within the
conterminous United States. Within the data used to train the weather
generator, four standard seasons are set (spring, summer, autumn,
winter) for each day in the time series. The varying statistics of each
season will impact the resulting simulations.
For example, using the GHCN precipitation, temperature, and season data, we can generate simulated precipitation and temperature for any desired time length and ensemble size. Your variables must be named as the following: ‘year’, ‘month’, ‘day’, ‘prcp’, ‘temp’, ‘season’, whether they are input as a dataframe or a text file. All input variables must be contained within the same dataframe or text file. If inputting a text file, it must be comma separated (.csv). The weather generator can handle NA values for precipitation or temperature, but all other variables should be numeric values.
library(wxgenR)
library(tidyr)
library(reshape2)
library(ggpubr)
library(lubridate)
library(dplyr)
# library(data.table)
library(moments)
library(seas)
library(padr)
#> Warning: package 'padr' was built under R version 4.2.3
library(hydroGOF)
#> Warning: package 'hydroGOF' was built under R version 4.2.3
#> Loading required package: zoo
#> Warning: package 'zoo' was built under R version 4.2.1
#>
#> Attaching package: 'zoo'
#> The following objects are masked from 'package:base':
#>
#> as.Date, as.Date.numeric
library(SpecsVerification)
#> Warning: package 'SpecsVerification' was built under R version 4.2.3
# library(sm)
library(ggridges)
#> Warning: package 'ggridges' was built under R version 4.2.3Use the variables within the wx() function like syr and
eyr (start and end year) to set the temporal boundaries
from which to sample, otherwise, if left empty the start and end years
will default to the beginning and end of your training data. Use
nsim to set the length (in years) of your simulated
weather, and nrealz to set the ensemble size (number of
traces).
The variable wwidth will set the sampling window for
each day of year (Jan. 1 through Dec. 31) for every year in the
simulation. The sampling window for each day of year is +/-
wwidth + 1, effectively sampling wwidth number
of days before and after each day of year, including that day of year. A
lower value for wwidth will sample fewer surrounding days
and a higher value will sample more days, resulting in dampened and
heightened variability, respectively. Typical setting of
wwidth is between 1 and 15, resulting in a daily sampling
window of 3 days and 31 days, respectively. Generally, higher and lower
values of wwidth result in higher and lower variance,
respectively, in the simulated data.
For example, to simulate precipitation on day 1 of the simulation
(Jan. 1 of year 1), with wwidth = 1 (a 3-day window), the
algorithm will sample days in the training record between (and
including) December 31 and January 2 (for all years in the training
record). For day 2 of the simulation (Jan. 2 of year 1), the algorithm
will sample days in the training record between January 1 and January 3.
Simulation day 3 (Jan. 3) will sample between January 2 and January 4,
and so on. Increasing wwidth to 2 (a 5-day window) will
sample between December 30 and January 3 for Jan. 1 simulations,
December 31 to January 4 for Jan. 2, and January 1 to January 5 for
Jan. 3, and so on.
In some cases, the wwidth will be automatically
increased through an adaptive window width if precipitation occurred on
a given day but there were less than two daily precipitation values over
0.01 inches during the window for that day. wwidth will
adaptively increase by 1 until two or more daily precipitation values
over 0.01 inches are in each window. Adaptive window width is most
likely to occur in regions with high aridity, dry seasons, a small
initial value of wwidth is used, or if the number of years
in the training data is relatively short (e.g., less than 30 years). To
display the results of the adaptive window width, set
awinFlag = T.
Here, our training data spans January 1, 2000 through the end of the
GHCN record so syr is set to be 2000 or greater. We want a
simulation length of 23-years (nsim) in order to match the
length of the historical record and 2 traces in our ensemble
(nrealz = 2) for brevity. Sampling for each day of the year
will sample from the preceding 3-days, the day of, and the following
3-days (wwidth = 3) for a total window size of 7-days.
We may also want to increase the variability of our simulated
precipitation by sampling outside the historical envelope with an
Epanechnikov Kernel (ekflag = T). For more details on the
Epanechnikov kernel and its use in a weather generator, see Rajagopalan
et al. (1996). Setting tempPerturb = T will increase the
variability of the simulated temperature by adding random noise from a
normal distribution fit using a mean of zero and a standard deviation
equal to the monthly standard deviation of simulated temperature
residuals. Given that simulated daily temperature at time t is a
function of temperature(t-1), cosine(t), sine(t), precipitation
occurrence(t), and monthly mean temperature(t), the standard deviation
of daily residuals from this model is calculated for each month and used
to add random noise to the simulated temperature. The temperature
simulation approach is inspired by- and adapted from- Verdin et
al. (2015, 2018).
Since the training data has units of inches and degrees Fahrenheit
for precipitation and temperature, respectively, we must set
unitSystem = "U.S. Customary".
# path = ".../path to GHCN station data/"
# files = list.files(path, full.names = T)
# n = length(files)
#
# fileList = vector("list", n)
#
# i = 1
# for(i in 1:n){
#
# fi = read.csv(files[i])
#
# staNum = fi$STATION[1]
# staNam = fi$NAME[1]
#
# fi.p = fi %>%
# dplyr::select(DATE, PRCP, TMAX, TMIN) %>%
# mutate(DATE = ymd(DATE)) %>%
# pad(interval = "day") %>%
# mutate(year = year(DATE), month = month(DATE), day = day(DATE),
# prcp = PRCP, temp = (TMAX + TMIN)/2, season = month) %>%
# mutate(daymonth = strftime(DATE, format="%m-%d")) %>%
# transform(t.clim = ave(temp, daymonth, FUN=function(x) mean(x, na.rm=TRUE))) %>%
# transform(temp = ifelse(is.na(temp),t.clim,temp)) %>%
# dplyr::select(year, month, day, prcp, temp, season)
#
# if(fi.p$month[1] != 1 | fi.p$day[1] != 1){
# fi.p = subset(fi.p, year > fi.p$year[1])
# }
#
# if(tail(fi.p$month, 1) != 12 | tail(fi.p$day, 1) != 31){
# fi.p = subset(fi.p, year < tail(fi.p$year, 1))
# }
#
# out = list(staNum, staNam, fi.p)
# names(out) = c("Station ID", "Station Name", "Data")
#
# fileList[[i]] = out
#
# }data(stationData)
glimpse(stationData)
#> List of 9
#> $ :List of 3
#> ..$ Station ID : chr "USC00162534"
#> ..$ Station Name: chr "DONALDSONVILLE 4 SW, LA US"
#> ..$ Data :'data.frame': 47481 obs. of 6 variables:
#> .. ..$ year : num [1:47481] 1893 1893 1893 1893 1893 ...
#> .. ..$ month : num [1:47481] 1 1 1 1 1 1 1 1 1 1 ...
#> .. ..$ day : int [1:47481] 1 2 3 4 5 6 7 8 9 10 ...
#> .. ..$ prcp : num [1:47481] NA NA NA NA NA NA 0 NA NA NA ...
#> .. ..$ temp : num [1:47481] 47 53.1 60 51.8 57 ...
#> .. ..$ season: num [1:47481] 1 1 1 1 1 1 1 1 1 1 ...
#> $ :List of 3
#> ..$ Station ID : chr "USC00050372"
#> ..$ Station Name: chr "ASPEN 1 SW, CO US"
#> ..$ Data :'data.frame': 15340 obs. of 6 variables:
#> .. ..$ year : num [1:15340] 1981 1981 1981 1981 1981 ...
#> .. ..$ month : num [1:15340] 1 1 1 1 1 1 1 1 1 1 ...
#> .. ..$ day : int [1:15340] 1 2 3 4 5 6 7 8 9 10 ...
#> .. ..$ prcp : num [1:15340] 0 0 0 0 0 NA 0 0 0 0 ...
#> .. ..$ temp : num [1:15340] 32 32.5 35.5 33 32 21.5 23.5 27 29 29 ...
#> .. ..$ season: num [1:15340] 1 1 1 1 1 1 1 1 1 1 ...
#> $ :List of 3
#> ..$ Station ID : chr "USC00080236"
#> ..$ Station Name: chr "ARCHBOLD BIO STATION, FL US"
#> ..$ Data :'data.frame': 19723 obs. of 6 variables:
#> .. ..$ year : num [1:19723] 1969 1969 1969 1969 1969 ...
#> .. ..$ month : num [1:19723] 1 1 1 1 1 1 1 1 1 1 ...
#> .. ..$ day : int [1:19723] 1 2 3 4 5 6 7 8 9 10 ...
#> .. ..$ prcp : num [1:19723] 0 0 0 0.18 0.28 0.43 0 0 0 0 ...
#> .. ..$ temp : num [1:19723] 70 53.5 57 64.5 58 50 47 51.5 56.5 64 ...
#> .. ..$ season: num [1:19723] 1 1 1 1 1 1 1 1 1 1 ...
#> $ :List of 3
#> ..$ Station ID : chr "USC00440766"
#> ..$ Station Name: chr "BLACKSBURG NATIONAL WEATHER SERVICE OFFICE, VA US"
#> ..$ Data :'data.frame': 25567 obs. of 6 variables:
#> .. ..$ year : num [1:25567] 1953 1953 1953 1953 1953 ...
#> .. ..$ month : num [1:25567] 1 1 1 1 1 1 1 1 1 1 ...
#> .. ..$ day : int [1:25567] 1 2 3 4 5 6 7 8 9 10 ...
#> .. ..$ prcp : num [1:25567] 0 0.1 0.35 0.27 0 0.08 0 0.41 0.1 0.4 ...
#> .. ..$ temp : num [1:25567] 36 34.5 31.5 28 27 28.5 46 40 38 38.5 ...
#> .. ..$ season: num [1:25567] 1 1 1 1 1 1 1 1 1 1 ...
#> $ :List of 3
#> ..$ Station ID : chr "USW00014606"
#> ..$ Station Name: chr "BANGOR INTERNATIONAL AIRPORT, ME US"
#> ..$ Data :'data.frame': 25567 obs. of 6 variables:
#> .. ..$ year : num [1:25567] 1953 1953 1953 1953 1953 ...
#> .. ..$ month : num [1:25567] 1 1 1 1 1 1 1 1 1 1 ...
#> .. ..$ day : int [1:25567] 1 2 3 4 5 6 7 8 9 10 ...
#> .. ..$ prcp : num [1:25567] 0 0 0.78 0.01 0 0.1 0 0 0.03 0.18 ...
#> .. ..$ temp : num [1:25567] 15 21.5 31.5 23.5 15 12 17 14 13.5 24.5 ...
#> .. ..$ season: num [1:25567] 1 1 1 1 1 1 1 1 1 1 ...
#> $ :List of 3
#> ..$ Station ID : chr "USW00094240"
#> ..$ Station Name: chr "QUILLAYUTE AIRPORT, WA US"
#> ..$ Data :'data.frame': 20454 obs. of 6 variables:
#> .. ..$ year : num [1:20454] 1967 1967 1967 1967 1967 ...
#> .. ..$ month : num [1:20454] 1 1 1 1 1 1 1 1 1 1 ...
#> .. ..$ day : int [1:20454] 1 2 3 4 5 6 7 8 9 10 ...
#> .. ..$ prcp : num [1:20454] 0.08 2.03 0.56 0.5 0.05 0.4 2.2 1.13 0 1.23 ...
#> .. ..$ temp : num [1:20454] 39.5 43.5 43.5 37.5 34.5 37.5 43.5 48 46 47.5 ...
#> .. ..$ season: num [1:20454] 1 1 1 1 1 1 1 1 1 1 ...
#> $ :List of 3
#> ..$ Station ID : chr "USC00346386"
#> ..$ Station Name: chr "NORMAN 3 SSE, OK US"
#> ..$ Data :'data.frame': 46751 obs. of 6 variables:
#> .. ..$ year : num [1:46751] 1895 1895 1895 1895 1895 ...
#> .. ..$ month : num [1:46751] 1 1 1 1 1 1 1 1 1 1 ...
#> .. ..$ day : int [1:46751] 1 2 3 4 5 6 7 8 9 10 ...
#> .. ..$ prcp : num [1:46751] 0.47 0 0 0 0.01 0 0 0 0 0 ...
#> .. ..$ temp : num [1:46751] 29 33.5 37.5 33.5 50.5 43.5 37.5 23 27 38.5 ...
#> .. ..$ season: num [1:46751] 1 1 1 1 1 1 1 1 1 1 ...
#> $ :List of 3
#> ..$ Station ID : chr "USC00028795"
#> ..$ Station Name: chr "TUCSON 17 NW, AZ US"
#> ..$ Data :'data.frame': 14610 obs. of 6 variables:
#> .. ..$ year : num [1:14610] 1983 1983 1983 1983 1983 ...
#> .. ..$ month : num [1:14610] 1 1 1 1 1 1 1 1 1 1 ...
#> .. ..$ day : int [1:14610] 1 2 3 4 5 6 7 8 9 10 ...
#> .. ..$ prcp : num [1:14610] 0 0 0 0 0 0 0 0 0 0 ...
#> .. ..$ temp : num [1:14610] 43.5 47.5 54 49.5 54.5 56 53.5 55 57 54.5 ...
#> .. ..$ season: num [1:14610] 1 1 1 1 1 1 1 1 1 1 ...
#> $ :List of 3
#> ..$ Station ID : chr "USC00472314"
#> ..$ Station Name: chr "EAGLE RIVER, WI US"
#> ..$ Data :'data.frame': 30316 obs. of 6 variables:
#> .. ..$ year : num [1:30316] 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 ...
#> .. ..$ month : num [1:30316] 1 1 1 1 1 1 1 1 1 1 ...
#> .. ..$ day : int [1:30316] 1 2 3 4 5 6 7 8 9 10 ...
#> .. ..$ prcp : num [1:30316] 0 0 0 0 0 0 0 0 0.12 0 ...
#> .. ..$ temp : num [1:30316] 5.5 7.5 10 -5.5 6.5 15.5 0.5 2 4.5 18.5 ...
#> .. ..$ season: num [1:30316] 1 1 1 1 1 1 1 1 1 1 ...fileList = stationData
n = length(stationData)
datList = vector("list", n)
nsim = 23 #number of simulation years
nrealz = 2 #number of traces in ensemble
run = T
if(run == T){
i = 1
for(i in 1:n){
cat(paste0("Starting: ", fileList[[i]][[2]], "\n"))
dat.i = fileList[[i]][[3]]
trnDat = subset(dat.i, year >= 2000)
verDat = subset(dat.i, year >= 2000)
z = wx(trainingData = trnDat,
nsim = nsim, nrealz = nrealz, aseed = 20190409,
wwidth = 3, unitSystem = "U.S. Customary", ekflag = T,
awinFlag = T, tempPerturb = T, numbCores = 2)
# out = list(fileList[[i]][[1]], fileList[[i]][[2]], trnYrs, trnDat, verDat, z)
out = list(fileList[[i]][[1]], fileList[[i]][[2]], verDat, z)
datList[[i]] = out
}
}
#> ...Simulate precipitation occurrence and temperature...
#> 1
#> 2
#> ...Simulate precipitation amount...
#> ...Simulate precipitation occurrence and temperature...
#> 1
#> 2
#> ...Simulate precipitation amount...
#> ...Simulate precipitation occurrence and temperature...
#> 1
#> 2
#> ...Simulate precipitation amount...
#> ...Simulate precipitation occurrence and temperature...
#> 1
#> 2
#> ...Simulate precipitation amount...
#> ...Simulate precipitation occurrence and temperature...
#> 1
#> 2
#> ...Simulate precipitation amount...
#> ...Simulate precipitation occurrence and temperature...
#> 1
#> 2
#> ...Simulate precipitation amount...
#> ...Simulate precipitation occurrence and temperature...
#> 1
#> 2
#> ...Simulate precipitation amount...
#> ...Simulate precipitation occurrence and temperature...
#> 1
#> 2
#> ...Simulate precipitation amount...
#> ...Simulate precipitation occurrence and temperature...
#> 1
#> 2
#> ...Simulate precipitation amount...The wx() function will return a list containing both your
input/training data, and a variety of processed outputs, named here as
the variable z. Within z, dat.d
is the original input data as well as some intermediary variables.
simyr1 contains the years within your training data that
were sampled to generate simulated values for each trace. X
is the occurrence of daily precipitation for each trace, where 1 and 0
indicate the presence and absence of precipitation, respectively.
Xseas is the season index for each day and trace.
Xpdate shows which days from the training data were sampled
for each simulated day and trace, if precipitation was simulated to
occur on a given day. Xpamt is the simulated precipitation
amount for each day and trace. Xtemp is the simulated
temperature for each day and trace.
Generally, Xpamt and Xtemp will be of most
interest to users as these are the desired outputs of simulated daily
precipitation and temperature.
outTag = "inSample"
outDir = paste0(".../path to output directory/", outTag)
dir.create(outDir)
outDirPlots = paste0(".../path to output directory/", outTag, "/plots/")
dir.create(outDirPlots)
outDirPlotsSta = paste0(".../path to output directory/", outTag, "/plots/stations/")
dir.create(outDirPlotsSta)if(run == T){
saveRDS(datList, paste0(outDir,"/trainingData_and_simResults.Rds"))
}else if(run == F){
datList = readRDS(paste0(outDir,"/trainingData_and_simResults.Rds"))
}
# z = datList[[1]][[4]]
# verDat = datList[[1]][[3]]
postProcess = function(z, verDat = NULL){
#parse variables from wx() output
dat.d = z$dat.d
simyr1 = z$simyr1
X = z$X
Xseas = z$Xseas
Xpdate = z$Xpdate
Xpamt = z$Xpamt
Xtemp = z$Xtemp
#write simulation output
#
it1 <- seq(1, length(X[,1]), 366)
it2 = it1+366-1
#initialize storage
sim.pcp = matrix(NA, nrow = nsim*366, ncol = nrealz+3)
sim.tmp = matrix(NA, nrow = nsim*366, ncol = nrealz+3)
sim.szn = matrix(NA, nrow = nsim*366, ncol = nrealz+3)
#loop through realization
irealz = 1
for (irealz in 1:nrealz){
outmat <- vector()
#loop through simulation years
isim = 1
for (isim in 1:nsim){
leapflag = FALSE
ayr = simyr1[isim, irealz]
if (leap_year(ayr)) leapflag = TRUE
col1 = rep(isim, 366) #column 1, simulation year
d1 = ayr*10^4+01*10^2+01; d2 = ayr*10^4+12*10^2+31
i1 = which(dat.d$date1 == d1)
i2 = which(dat.d$date1 == d2)
col2 = dat.d$date1[i1:i2] #column 2, simulation date
if (leapflag == FALSE) col2 = c(col2,NA)
i1 = it1[isim]
i2 = it2[isim]
col3 = Xseas[i1:i2, irealz] #column 3, simulation season
col4 = X[i1:i2, irealz] #column 4, precipitation occurrence
col5 = Xpdate[i1:i2, irealz] #column 5, precipation resampling date
col6 = Xpamt[i1:i2, irealz] #column 6, resampled precipitation amount
col7 = Xtemp[i1:i2, irealz] #column7, simulated temperature
#create time series of 'simulation day'
sim.yr = rep(isim, length(col2))
sim.month = month(ymd(col2))
sim.day = day(ymd(col2))
outmat = rbind(outmat, cbind(sim.yr, sim.month, sim.day, col6, col7, col3))
} #isim
colnames(outmat) = c("simulation year", "month", "day", "prcp", "temp", "season")
if(irealz == 1){
sim.pcp[,1:3] = outmat[,1:3]
sim.tmp[,1:3] = outmat[,1:3]
sim.szn[,1:3] = outmat[,1:3]
}
sim.pcp[,irealz+3] = outmat[,4]
sim.tmp[,irealz+3] = outmat[,5]
sim.szn[,irealz+3] = outmat[,6]
} #irealz
#format
sim.pcp = formatting(df = sim.pcp, dat.d)
sim.tmp = formatting(df = sim.tmp, dat.d)
sim.szn = formatting(df = sim.szn, dat.d)
#format training data
if(is.null(verDat) == FALSE){
verDat$date = ymd(paste(verDat$year, verDat$month, verDat$day, sep = "-"))
verDat.p = verDat %>%
mutate(yday = as.numeric(yday(date)),
week = as.numeric(week(date))
)
#format training data
# colnames(dat.d)[11] = "yday"
obs.pcp = dplyr::select(verDat.p, year, month, day, week, date, yday, prcp)
obs.pcp$prcp = replace_na(obs.pcp$prcp, 0)
obs.tmp = dplyr::select(verDat.p, year, month, day, week, date, yday, temp)
} else{
#format training data
colnames(dat.d)[11] = "yday"
obs.pcp = dat.d[,c(1:3,8:9,11,4)]
obs.tmp = dat.d[,c(1:3,8:9,11,5)]
}
out = list(sim.pcp, sim.tmp, sim.szn, obs.pcp, obs.tmp)
names(out) = c("sim.pcp", "sim.tmp", "sim.szn", "obs.pcp", "obs.tmp")
return(out)
}#Format dataframes for simulated precip, temperature, and season
# df = sim.pcp
formatting = function(df, dat.d){
df = as.data.frame(df)
colnames(df) = c("simulation year", "month", "day", paste0("Trace_", 1:nrealz))
#remove 366 days for non-leap years
df = drop_na(df, c(month, day))
#assign simulation year to start at the same time as training data
df$`simulation year` = df$`simulation year` + dat.d$year[1] - 1
#format date
df$Date = ymd(paste(df$`simulation year`, df$month, df$day, sep = "-"))
#remove years that aren't leap years
# df = drop_na(df, Date)
df = df %>%
mutate(yday = as.numeric(yday(Date)),
week = as.numeric(week(Date))) %>%
relocate(c(Date,yday,week), .after = day) %>%
reshape2::melt(id = 1:6)
return(df)
}
if(run == T){
datListProc = vector("list", n)
i = 1
for(i in 1:n){
z = datList[[i]][[4]]
verDat = datList[[i]][[3]]
z.p = postProcess(z, verDat)
z.p.c = list(z.p, datList[[i]][[1]], datList[[i]][[2]])
datListProc[[i]] = z.p.c
}
}
#> Warning: 2 failed to parse.
#> Warning: 2 failed to parse.
#> Warning: 2 failed to parse.
#> Warning: 2 failed to parse.
#> Warning: 2 failed to parse.
#> Warning: 2 failed to parse.
#> Warning: 2 failed to parse.
#> Warning: 2 failed to parse.
#> Warning: 2 failed to parse.
#> Warning: 2 failed to parse.
#> Warning: 2 failed to parse.
#> Warning: 2 failed to parse.
#> Warning: 2 failed to parse.
#> Warning: 2 failed to parse.
#> Warning: 2 failed to parse.
#> Warning: 2 failed to parse.
#> Warning: 2 failed to parse.
#> Warning: 2 failed to parse.
#> Warning: 2 failed to parse.
#> Warning: 2 failed to parse.
#> Warning: 2 failed to parse.
#> Warning: 2 failed to parse.
#> Warning: 2 failed to parse.
#> Warning: 2 failed to parse.
#> Warning: 2 failed to parse.
#> Warning: 2 failed to parse.
#> Warning: 2 failed to parse.if(run == T){
saveRDS(datListProc, paste0(outDir,"/simResultsPostProcessed.Rds"))
}else if(run == F){
datListProc = readRDS(paste0(outDir,"/simResultsPostProcessed.Rds"))
}datListProc[[4]][[3]] = "BLACKSBURG NWS, VA US"
datListProc[[5]][[3]] = "BANGOR INTL AIRPORT, ME US"# i = 1
# simDat = datListProc[[i]][[1]]$sim.tmp
# obsDat = datListProc[[i]][[1]]$obs.tmp
# Tag = "Temp"
# ID = datListProc[[i]][[2]]
i = 1
simDat = datListProc[[i]][[1]]$sim.pcp
obsDat = datListProc[[i]][[1]]$obs.pcp
Tag = "Precip"
ID = datListProc[[i]][[2]]
monthlyPlot = function(simDat, obsDat, Tag, ID){
if(Tag == "Temp"){
simM = simDat %>%
drop_na() %>%
group_by(variable, month, `simulation year`) %>%
summarise(
mean = mean(value, na.rm = T),
max = max(value, na.rm = T),
min = min(value, na.rm = T),
sd = sd(value, na.rm = T),
skew = skewness(value, na.rm = T)
) %>%
ungroup()
simMM <- simM %>%
group_by(variable, month) %>%
summarise(
mean=mean(mean),
max=mean(max),
min=mean(min),
sd=sqrt(mean(sd^2)),
skew=mean(skew, na.rm=T)
) %>%
ungroup()
obs <- obsDat %>%
drop_na() %>%
group_by(month, year) %>%
summarise(
mean = mean(temp, na.rm = T),
max = max(temp, na.rm = T),
min = min(temp, na.rm = T),
sd = sd(temp, na.rm = T),
skew = skewness(temp, na.rm = T),
) %>%
ungroup()
obsMM <- obs %>%
group_by(month) %>%
summarise(
mean = mean(mean, na.rm = T),
max = mean(max, na.rm = T),
min = mean(min, na.rm = T),
sd = sqrt(mean(sd^2)),
skew = mean(skew, na.rm=T)
) %>%
mutate(variable = "Observed") %>%
relocate(variable) %>%
ungroup()
# colnames(obsMM)[-1] = paste0("obs_", colnames(obsMM)[-1])
}else if(Tag == "Precip"){
simM = simDat %>%
drop_na() %>%
group_by(variable, month, `simulation year`) %>%
summarise(
sum = sum(value, na.rm = T),
max = max(value, na.rm = T),
min = min(value, na.rm = T),
sd = sd(value, na.rm = T),
skew = skewness(value, na.rm = T)
) %>%
ungroup()
simMM <- simM %>%
group_by(variable, month) %>%
summarise(
sum=mean(sum),
max=mean(max),
min=mean(min),
sd=sqrt(mean(sd^2)),
skew=mean(skew, na.rm = T)
) %>%
ungroup()
obs <- obsDat %>%
drop_na() %>%
group_by(month, year) %>%
summarise(
sum = sum(prcp, na.rm = T),
max = max(prcp, na.rm = T),
min = min(prcp, na.rm = T),
sd = sd(prcp, na.rm = T),
skew = skewness(prcp, na.rm = T)
) %>%
ungroup()
obsMM <- obs %>%
group_by(month) %>%
summarise(
sum = mean(sum, na.rm = T),
max = mean(max, na.rm = T),
min = mean(min, na.rm = T),
sd = sqrt(mean(sd^2)),
skew = mean(skew, na.rm = T)
) %>%
mutate(variable = "Observed") %>%
relocate(variable) %>%
ungroup()
# colnames(obsMM)[-1] = paste0("obs_", colnames(obsMM)[-1])
}
densityData = data.frame(simM[,c(2,4)], Tag = "Simulated")
densityData = bind_rows(densityData, data.frame(obs[,c(1,3)], Tag = "Observed"))
df.comb = rbind(obsMM, simMM)
#plotting --------------------------------
if(Tag == "Temp"){
p1 = ggplot(df.comb) +
geom_boxplot(data = subset(df.comb, variable != "Observed"), aes(x = month, y = mean, group = month)) +
geom_line(data = subset(df.comb, variable == "Observed"), aes(x = month, y = mean), color = "blue", size = 0.5) +
geom_point(data = subset(df.comb, variable == "Observed"), aes(x = month, y = mean), color = "blue", size = 1.5, show.legend = T) +
scale_colour_manual(values = c('blue'='blue'), labels = c('Observed')) +
xlab("Month") + ylab("Temperature (°F)") +
theme_bw() +
theme(axis.title = element_text(face = "bold"),
text=element_text(size=12),
panel.grid.major = element_line(),
legend.title=element_blank(),
plot.title = element_text(size=8)
) +
scale_x_continuous(breaks = 1:12) +
ggtitle(paste0("Average Mean Monthly Temperature \n", ID))
#monthly pdf
p6 = ggplot(densityData) +
geom_density_ridges(aes(y = as.factor(month), x = mean, fill = Tag, color = Tag), alpha = 0.5) +
scale_fill_manual(values = c("blue", "black"), labels = c("Observed", "Simulated")) +
scale_color_manual(values = c("blue", "black"), guide = "none") +
ylab("Month") + xlab("Temperature (°F)") +
theme_bw() +
theme(axis.title = element_text(face = "bold"),
text=element_text(size=12),
panel.grid.major = element_line(),
legend.title=element_blank(),
plot.title = element_text(size=8)
) +
# scale_x_continuous(breaks = 1:12) +
ggtitle(paste0("Average Monthly Temperature \n", ID))
}else if(Tag == "Precip"){
p1 = ggplot(df.comb) +
geom_boxplot(data = subset(df.comb, variable != "Observed"), aes(x = month, y = sum, group = month)) +
geom_line(data = subset(df.comb, variable == "Observed"), aes(x = month, y = sum), size = 0.5, color = "blue") +
geom_point(data = subset(df.comb, variable == "Observed"), aes(x = month, y = sum), size = 1.5, color = "blue", show.legend = T) +
scale_color_manual(values = c('blue'='blue'), labels = c('Observed')) +
xlab("Month") + ylab("Precipitation (inches)") +
theme_bw() +
theme(axis.title = element_text(face = "bold"),
text=element_text(size=12),
panel.grid.major = element_line(),
legend.title=element_blank(),
plot.title = element_text(size=8)
) +
scale_x_continuous(breaks = 1:12) +
ggtitle(paste0("Average Total Monthly Precipitation \n", ID))
#monthly pdf
p6 = ggplot(densityData) +
geom_density_ridges(aes(y = as.factor(month), x = sum, fill = Tag, color = Tag), alpha = 0.5) +
scale_fill_manual(values = c("blue", "black"), labels = c("Observed", "Simulated")) +
scale_color_manual(values = c("blue", "black"), guide = "none") +
ylab("Month") + xlab("Precipitation (inches)") +
theme_bw() +
theme(axis.title = element_text(face = "bold"),
text=element_text(size=12),
panel.grid.major = element_line(),
legend.title=element_blank(),
plot.title = element_text(size=8)
) +
# scale_x_continuous(breaks = 1:12) +
ggtitle(paste0("Total Monthly Precipitation\n", ID))
}
if(Tag == "Temp"){
yLabel = "Temperature "
units = "(°F)"
} else if(Tag == "Precip"){
yLabel = "Precipitation "
units = "(inches)"
}
#monthly SD
p2 = ggplot(df.comb) +
geom_boxplot(data = subset(df.comb, variable != "Observed"), aes(x = month, y = sd, group = month)) +
geom_line(data = subset(df.comb, variable == "Observed"), aes(x = month, y = sd), size = 0.5, color = "blue", show.legend = T) +
geom_point(data = subset(df.comb, variable == "Observed"), aes(x = month, y = sd), size = 1.5, color = "blue", show.legend = T) +
scale_color_manual(values = c('blue'='blue'), labels = c('Observed')) +
xlab("Month") + ylab(paste0("Standard Deviation ", units)) +
theme_bw() +
theme(axis.title = element_text(face = "bold"),
text=element_text(size=12),
panel.grid.major = element_line(),
legend.title=element_blank(),
plot.title = element_text(size=8)
) +
scale_x_continuous(breaks = 1:12) +
ggtitle(paste0("Average Standard Deviation in Monthly ", yLabel, "\n", ID))
#monthly Skew
p3 = ggplot(df.comb) +
geom_boxplot(data = subset(df.comb, variable != "Observed"), aes(x = month, y = skew, group = month)) +
geom_line(data = subset(df.comb, variable == "Observed"), aes(x = month, y = skew), size = 0.5, color = "blue", show.legend = T) +
geom_point(data = subset(df.comb, variable == "Observed"), aes(x = month, y = skew), size = 1.5, color = "blue", show.legend = T) +
scale_color_manual(values = c('blue'='blue'), labels = c('Observed')) +
xlab("Month") + ylab("Skew (-)") +
theme_bw() +
theme(axis.title = element_text(face = "bold"),
text=element_text(size=12),
panel.grid.major = element_line(),
legend.title=element_blank(),
plot.title = element_text(size=8)
) +
scale_x_continuous(breaks = 1:12) +
ggtitle(paste0("Average Skew in Monthly ", yLabel, "\n", ID))
#monthly max
p4 = ggplot(df.comb) +
geom_boxplot(data = subset(df.comb, variable != "Observed"), aes(x = month, y = max, group = month)) +
geom_line(data = subset(df.comb, variable == "Observed"), aes(x = month, y = max), size = 0.5, color = "blue", show.legend = T) +
geom_point(data = subset(df.comb, variable == "Observed"), aes(x = month, y = max), size = 1.5, color = "blue", show.legend = T) +
scale_color_manual(values = c('blue'='blue'), labels = c('Observed')) +
xlab("Month") + ylab(paste0("Maximum ", units)) +
theme_bw() +
theme(axis.title = element_text(face = "bold"),
text=element_text(size=12),
panel.grid.major = element_line(),
legend.title=element_blank(),
plot.title = element_text(size=8)
) +
scale_x_continuous(breaks = 1:12) +
ggtitle(paste0("Average Monthly Maximum ", yLabel, "\n", ID))
#monthly min
p5 = ggplot(df.comb) +
geom_boxplot(data = subset(df.comb, variable != "Observed"), aes(x = month, y = min, group = month)) +
geom_line(data = subset(df.comb, variable == "Observed"), aes(x = month, y = min), size = 0.5, color = "blue", show.legend = T) +
geom_point(data = subset(df.comb, variable == "Observed"), aes(x = month, y = min), size = 1.5, color = "blue", show.legend = T) +
scale_color_manual(values = c('blue'='blue'), labels = c('Observed')) +
xlab("Month") + ylab(paste0("Minimum ", units)) +
theme_bw() +
theme(axis.title = element_text(face = "bold"),
text=element_text(size=12),
panel.grid.major = element_line(),
legend.title=element_blank(),
plot.title = element_text(size=8)
) +
scale_x_continuous(breaks = 1:12) +
ggtitle(paste0("Average Monthly Minimum ", yLabel, "\n", ID))
if(Tag == "Temp"){
p.comb = ggarrange(p1, p2, p5, p4, nrow = 2, ncol = 2, common.legend = TRUE, legend = "right")
}else if(Tag == "Precip"){
p.comb = ggarrange(p1, p2, p3, p4, nrow = 2, ncol = 2, common.legend = TRUE, legend = "right")
}
print(p.comb)
#don't save plot to file
# p.out = paste0(outDirPlotsSta, "/monthlyStats_", Tag, "_", ID, ".png")
# ggsave(filename = p.out, plot = p.comb, device = "png", height = 8, width = 8, units = "in")
#skew and pdf case study
if(Tag == "Temp"){
p.comb = ggarrange(p3, p6, nrow = 1, ncol = 2, common.legend = TRUE, legend = "right")
print(p.comb)
# p.out = paste0(outDirPlotsSta, "/monthly_skewAndPDF_", Tag, "_", ID, ".png")
# ggsave(filename = p.out, plot = p.comb, device = "png", height = 4, width = 8, units = "in")
}
df.comb.o = df.comb %>%
mutate(ID = ID, Tag = Tag)
return(df.comb.o)
}
df.monthly.pcp = NULL
for(i in 1:n){
simDat = datListProc[[i]][[1]]$sim.pcp
obsDat = datListProc[[i]][[1]]$obs.pcp
Tag = "Precip"
ID = datListProc[[i]][[3]]
df.i = monthlyPlot(simDat, obsDat, Tag, ID)
df.monthly.pcp = rbind(df.monthly.pcp, df.i)
}
#> `summarise()` has grouped output by 'variable', 'month'. You can override using
#> the `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'month'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'variable', 'month'. You can override using
#> the `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'month'. You can override using the
#> `.groups` argument.#> `summarise()` has grouped output by 'variable', 'month'. You can override using
#> the `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'month'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'variable', 'month'. You can override using
#> the `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'month'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'variable', 'month'. You can override using
#> the `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'month'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'variable', 'month'. You can override using
#> the `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'month'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'variable', 'month'. You can override using
#> the `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'month'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'variable', 'month'. You can override using
#> the `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'month'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'variable', 'month'. You can override using
#> the `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'month'. You can override using the
#> `.groups` argument.
df.monthly.tmp = NULL
for(i in 1:n){
simDat = datListProc[[i]][[1]]$sim.tmp
obsDat = datListProc[[i]][[1]]$obs.tmp
Tag = "Temp"
ID = datListProc[[i]][[3]]
df.i = monthlyPlot(simDat, obsDat, Tag, ID)
df.monthly.tmp = rbind(df.monthly.tmp, df.i)
}
#> `summarise()` has grouped output by 'variable', 'month'. You can override using
#> the `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'month'. You can override using the
#> `.groups` argument.
#> Picking joint bandwidth of 1.17#> `summarise()` has grouped output by 'variable', 'month'. You can override using
#> the `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'month'. You can override using the
#> `.groups` argument.
#> Picking joint bandwidth of 1.18
#> `summarise()` has grouped output by 'variable', 'month'. You can override using
#> the `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'month'. You can override using the
#> `.groups` argument.
#> Picking joint bandwidth of 1.02
#> `summarise()` has grouped output by 'variable', 'month'. You can override using
#> the `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'month'. You can override using the
#> `.groups` argument.
#> Picking joint bandwidth of 1.32
#> `summarise()` has grouped output by 'variable', 'month'. You can override using
#> the `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'month'. You can override using the
#> `.groups` argument.
#> Picking joint bandwidth of 1.33
#> `summarise()` has grouped output by 'variable', 'month'. You can override using
#> the `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'month'. You can override using the
#> `.groups` argument.
#> Picking joint bandwidth of 0.882
#> `summarise()` has grouped output by 'variable', 'month'. You can override using
#> the `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'month'. You can override using the
#> `.groups` argument.
#> Picking joint bandwidth of 1.17
#> `summarise()` has grouped output by 'variable', 'month'. You can override using
#> the `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'month'. You can override using the
#> `.groups` argument.
#> Picking joint bandwidth of 0.985
#> `summarise()` has grouped output by 'variable', 'month'. You can override using
#> the `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'month'. You can override using the
#> `.groups` argument.
#> Picking joint bandwidth of 1.59
#plotting - facet plot
p1 = ggplot(df.monthly.tmp) +
geom_boxplot(data = subset(df.monthly.tmp, variable != "Observed"), aes(x = month, y = mean, group = month)) +
geom_line(data = subset(df.monthly.tmp, variable == "Observed"), aes(x = month, y = mean), size = 0.5, color = "blue", show.legend = T) +
geom_point(data = subset(df.monthly.tmp, variable == "Observed"), aes(x = month, y = mean), size = 1.5, color = "blue", show.legend = T) +
scale_color_manual(values = c('blue'='blue'), labels = c('Observed')) +
xlab("Month") + ylab("Temperature (°F)") +
theme_bw() +
theme(axis.title = element_text(face = "bold"),
text=element_text(size=12),
panel.grid.major = element_line(),
legend.title=element_blank(),
plot.title = element_text(size=10),
strip.text.x = element_text(size = 8)
) +
scale_x_continuous(breaks = 1:12) +
ggtitle(paste0("Average Mean Monthly Temperature ")) +
facet_wrap(~ID, scales = "free")
print(p1)
# p.out = paste0(outDirPlots, "/monthlyStats_faceted_temperature.png")
# ggsave(filename = p.out, plot = p1, device = "png", height = 8, width = 8, units = "in")
p1 = ggplot(df.monthly.pcp) +
geom_boxplot(data = subset(df.monthly.pcp, variable != "Observed"), aes(x = month, y = sum, group = month)) +
geom_line(data = subset(df.monthly.pcp, variable == "Observed"), aes(x = month, y = sum), size = 0.5, color = "blue", show.legend = T) +
geom_point(data = subset(df.monthly.pcp, variable == "Observed"), aes(x = month, y = sum), size = 1.5, color = "blue", show.legend = T) +
scale_color_manual(values = c('blue'='blue'), labels = c('Observed')) +
xlab("Month") + ylab("Precipitation (inches)") +
theme_bw() +
theme(axis.title = element_text(face = "bold"),
text=element_text(size=12),
panel.grid.major = element_line(),
legend.title=element_blank(),
plot.title = element_text(size=10),
strip.text.x = element_text(size = 8)
) +
scale_x_continuous(breaks = 1:12) +
ggtitle(paste0("Average Total Monthly Precipitation ")) +
facet_wrap(~ID, scales = "free")
print(p1)
# p.out = paste0(outDirPlots, "/monthlyStats_faceted_precipitation.png")
# ggsave(filename = p.out, plot = p1, device = "png", height = 8, width = 8, units = "in")
#process and plot daily data
i = 1
simDat = datListProc[[i]][[1]]$sim.pcp
obsDat = datListProc[[i]][[1]]$obs.pcp
Tag = "Precip"
ID = datListProc[[i]][[2]]
Name = datListProc[[i]][[3]]
dailyPlot = function(simDat, obsDat, Tag, ID, Name){
simD = simDat %>%
drop_na() %>%
group_by(variable, yday) %>%
summarise(
mean = mean(value, na.rm = T),
max = max(value, na.rm = T),
min = min(value, na.rm = T),
sd = sd(value, na.rm = T),
skew = skewness(value, na.rm = T)
) %>%
ungroup()
simDq <- simD %>%
group_by(yday) %>%
summarise(
mean_q5 = quantile(mean, 0.05, na.rm = T),
mean_med = median(mean, na.rm = T),
mean_q95 = quantile(mean, 0.95, na.rm =T),
max_q5 = quantile(max, 0.05, na.rm = T),
max_med = median(max, na.rm = T),
max_q95 = quantile(max, 0.95, na.rm = T),
min_q5 = quantile(min, 0.05, na.rm = T),
min_med = median(min, na.rm = T),
min_q95 = quantile(min, 0.95, na.rm = T),
sd_q5 = quantile(sd, 0.05, na.rm = T),
sd_med = median(sd),
sd_q95 = quantile(sd, 0.95, na.rm = T),
skew_q5 = quantile(skew, 0.05, na.rm = T),
skew_med = median(skew, na.rm = T),
skew_q95 = quantile(skew, 0.95, na.rm = T)
) %>%
# drop_na() %>%
ungroup()
if(Tag == "Temp"){
obs <- obsDat %>%
drop_na() %>%
group_by(yday) %>%
summarise(
mean = mean(temp, na.rm = T),
max = max(temp, na.rm = T),
min = min(temp, na.rm = T),
sd = sd(temp, na.rm = T),
skew = skewness(temp, na.rm = T)
) %>%
ungroup()
} else if(Tag == "Precip"){
obs <- obsDat %>%
drop_na() %>%
group_by(yday) %>%
summarise(
mean = mean(prcp, na.rm = T),
max = max(prcp, na.rm = T),
min = min(prcp, na.rm = T),
sd = sd(prcp, na.rm = T),
skew = skewness(prcp, na.rm = T)
) %>%
ungroup()
}
colnames(obs)[-1] = paste0("obs_", colnames(obs)[-1])
df.comb = left_join(simDq, obs, by = "yday")
#calc performance metrics
ensMed.rmse = rmse(sim = simDq$mean_med, obs = obs$obs_mean)
# ensMed.nse = NSE(sim = simDq$mean_med, obs = obs$obs_mean)
ensMed.cor = cor(x = simDq$mean_med, y = obs$obs_mean, method = "spearman")
ensDat = as.matrix(pivot_wider(simD, names_from = variable, values_from = mean, id_cols = yday))
if(Tag == "Precip") ensRef = as.matrix(pivot_wider(obsDat, names_from = year, values_from = prcp, id_cols = yday))
if(Tag == "Temp") ensRef = as.matrix(pivot_wider(obsDat, names_from = year, values_from = temp, id_cols = yday))
crps.Dat = mean(EnsCrps(ens = ensDat[,-1], obs = obs$obs_mean))
crps.Ref = mean(EnsCrps(ens = ensRef[,-1], obs = obs$obs_mean))
crpss = 1 - crps.Dat/crps.Ref
perfMetrics = data.frame(ID = ID, Name = Name, EnsMedRMSE = ensMed.rmse, CRPSS = crpss, EnsMedCor = ensMed.cor, Tag = Tag)
#plotting --------------------------------
lgdLoc = c(0.8, 0.9)
if(Tag == "Temp"){
yLabel = "Daily Temperature "
units = "(°F)"
} else if(Tag == "Precip"){
yLabel = "Daily Precipitation "
units = "(inches)"
}
trnAlpha = 0.65
#daily mean
p1 = ggplot(df.comb) +
geom_ribbon(aes(x = yday, ymin = mean_q5, ymax = mean_q95), alpha = 0.25) +
geom_line(aes(x = yday, y = mean_med, color = "red"), size = 1, alpha = 0.8) +
# geom_line(aes(x = yday, y = obs_mean), size = 0.3, alpha = trnAlpha, linetype = "solid", color = "blue") +
geom_point(aes(x = yday, y = obs_mean), size = 0.6, alpha = trnAlpha, color = "blue") +
scale_colour_manual(values =c('blue'='blue','red'='red', 'grey' = 'grey'), labels = c('Observed','Simulation Median', '95% Confidence')) +
theme_bw() +
theme(axis.title = element_text(face = "bold"),
text=element_text(size=14),
panel.grid.major = element_line(),
legend.title=element_blank(),
legend.position = lgdLoc,
legend.background = element_blank(),
legend.box.background = element_blank(),
legend.key = element_blank()) +
xlab("Day of Year") + ylab(paste0("Mean ", yLabel, units))
#daily SD
p2 = ggplot(df.comb) +
geom_ribbon(aes(x = yday, ymin = sd_q5, ymax = sd_q95), alpha = 0.25) +
geom_line(aes(x = yday, y = sd_med, color = "red"), size = 1, alpha = 0.8) +
# geom_line(aes(x = yday, y = obs_sd), size = 0.3, alpha = trnAlpha, linetype = "solid", color = "blue") +
geom_point(aes(x = yday, y = obs_sd), size = 0.6, alpha = trnAlpha, color = "blue") +
scale_colour_manual(values =c('blue'='blue','red'='red', 'grey' = 'grey'), labels = c('Observed','Simulation Median', '95% Confidence')) +
theme_bw() +
theme(axis.title = element_text(face = "bold"),
text=element_text(size=14),
panel.grid.major = element_line(),
legend.title=element_blank(),
legend.position = lgdLoc,
legend.background = element_blank(),
legend.box.background = element_blank(),
legend.key = element_blank()) +
xlab("Day of Year") + ylab(paste0("Std. Deviation of ", yLabel, units))
#daily skew
p3 = ggplot(df.comb) +
geom_ribbon(aes(x = yday, ymin = skew_q5, ymax = skew_q95), alpha = 0.25) +
geom_line(aes(x = yday, y = skew_med, color = "red"), size = 1, alpha = 0.8) +
# geom_line(aes(x = yday, y = obs_skew), size = 0.3, alpha = trnAlpha, linetype = "solid", color = "blue") +
geom_point(aes(x = yday, y = obs_skew), size = 0.6, alpha = trnAlpha, color = "blue") +
scale_colour_manual(values =c('blue'='blue','red'='red', 'grey' = 'grey'), labels = c('Observed','Simulation Median', '95% Confidence')) +
theme_bw() +
theme(axis.title = element_text(face = "bold"),
text=element_text(size=14),
panel.grid.major = element_line(),
legend.title=element_blank(),
legend.position = lgdLoc,
legend.background = element_blank(),
legend.box.background = element_blank(),
legend.key = element_blank()) +
xlab("Day of Year") + ylab(paste0("Skew of ", yLabel, " (-)"))
#daily Max
p4 = ggplot(df.comb) +
geom_ribbon(aes(x = yday, ymin = max_q5, ymax = max_q95), alpha = 0.25) +
geom_line(aes(x = yday, y = max_med, color = "red"), size = 1, alpha = 0.8) +
# geom_line(aes(x = yday, y = obs_max), size = 0.3, alpha = trnAlpha, linetype = "solid", color = "blue") +
geom_point(aes(x = yday, y = obs_max), size = 0.6, alpha = trnAlpha, color = "blue") +
scale_colour_manual(values =c('blue'='blue','red'='red', 'grey' = 'grey'), labels = c('Observed','Simulation Median', '95% Confidence')) +
theme_bw() +
theme(axis.title = element_text(face = "bold"),
text=element_text(size=14),
panel.grid.major = element_line(),
legend.title=element_blank(),
legend.position = lgdLoc,
legend.background = element_blank(),
legend.box.background = element_blank(),
legend.key = element_blank()) +
xlab("Day of Year") + ylab(paste0("Maximum ", yLabel, units))
#daily Min
p5 = ggplot(df.comb) +
geom_ribbon(aes(x = yday, ymin = min_q5, ymax = min_q95), alpha = 0.25) +
geom_line(aes(x = yday, y = min_med, color = "red"), size = 1, alpha = 0.8) +
# geom_line(aes(x = yday, y = obs_max), size = 0.3, alpha = trnAlpha, linetype = "solid", color = "blue") +
geom_point(aes(x = yday, y = obs_min), size = 0.6, alpha = trnAlpha, color = "blue") +
scale_colour_manual(values =c('blue'='blue','red'='red', 'grey' = 'grey'), labels = c('Observed','Simulation Median', '95% Confidence')) +
theme_bw() +
theme(axis.title = element_text(face = "bold"),
text=element_text(size=14),
panel.grid.major = element_line(),
legend.title=element_blank(),
legend.position = lgdLoc,
legend.background = element_blank(),
legend.box.background = element_blank(),
legend.key = element_blank()) +
xlab("Day of Year") + ylab(paste0("Minimum ", yLabel, units))
if(Tag == "Temp"){
p.comb = ggarrange(p1, p2, p5, p4, nrow = 2, ncol = 2, common.legend = TRUE, legend = "top")
}else if(Tag == "Precip"){
p.comb = ggarrange(p1, p2, p3, p4, nrow = 2, ncol = 2, common.legend = TRUE, legend = "top")
}
p.comb = annotate_figure(p.comb, top = text_grob(paste(ID, Name, sep = " - ")))
print(p.comb)
# p.out = paste0(outDirPlotsSta, "/dailyStats_", Tag, "_", Name, ".png")
# ggsave(filename = p.out, plot = p.comb, device = "png")
df.comb.o = df.comb %>%
mutate(ID = ID, Name = Name, Tag = Tag)
return(list(df.comb.o, perfMetrics))
}df.daily.pcp = NULL
df.daily.pcp.perf = NULL
for(i in 1:n){
simDat = datListProc[[i]][[1]]$sim.pcp
obsDat = datListProc[[i]][[1]]$obs.pcp
Tag = "Precip"
ID = datListProc[[i]][[2]]
Name = datListProc[[i]][[3]]
df.i = dailyPlot(simDat, obsDat, Tag, ID, Name)
df.daily.pcp = rbind(df.daily.pcp, df.i[[1]])
df.daily.pcp.perf = rbind(df.daily.pcp.perf, df.i[[2]])
}
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> Warning: Removed 2 rows containing missing values (geom_point).
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> Warning: Removed 7 rows containing missing values (geom_point).
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> Warning: Removed 64 rows containing missing values (geom_point).
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
# lgdLoc = c(0.8, 0.9)
if(Tag == "Temp"){
yLabel = "Daily Temperature "
units = "(°F)"
} else if(Tag == "Precip"){
yLabel = "Daily Precipitation "
units = "(inches)"
}
trnAlpha = 0.5
#daily mean
p1 = ggplot(df.daily.pcp) +
geom_ribbon(aes(x = yday, ymin = mean_q5, ymax = mean_q95), alpha = 0.25) +
geom_line(aes(x = yday, y = mean_med, color = "red"), size = 1, alpha = 0.8) +
# geom_line(aes(x = yday, y = obs_mean), size = 0.15, alpha = trnAlpha-0.15, linetype = "solid", color = "blue") +
geom_point(aes(x = yday, y = obs_mean), size = 0.3, alpha = trnAlpha, color = "blue") +
scale_colour_manual(values =c('blue'='blue','red'='red', 'grey' = 'grey'), labels = c('Observed','Simulation Median', '95% Confidence')) +
theme_bw() +
theme(axis.title = element_text(face = "bold"),
# text=element_text(size=14),
panel.grid.major = element_line(),
legend.title=element_blank(),
legend.position = "top",
legend.background = element_blank(),
legend.box.background = element_blank(),
legend.key = element_blank()) +
xlab("Day of Year") + ylab(paste0("Mean ", yLabel, units)) +
facet_wrap(~Name, scales = "free")
print(p1)
# p.out = paste0(outDirPlots, "/dailyStats_faceted_precipitation.png")
# ggsave(filename = p.out, plot = p1, device = "png", height = 8, width = 8, units = "in")
df.daily.tmp = NULL
df.daily.tmp.perf = NULL
for(i in 1:n){
simDat = datListProc[[i]][[1]]$sim.tmp
obsDat = datListProc[[i]][[1]]$obs.tmp
Tag = "Temp"
ID = datListProc[[i]][[2]]
Name = datListProc[[i]][[3]]
df.i = dailyPlot(simDat, obsDat, Tag, ID, Name)
df.daily.tmp = rbind(df.daily.tmp, df.i[[1]])
df.daily.tmp.perf = rbind(df.daily.tmp.perf, df.i[[2]])
}
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
# lgdLoc = c(0.8, 0.9)
if(Tag == "Temp"){
yLabel = "Daily Temperature "
units = "(°F)"
} else if(Tag == "Precip"){
yLabel = "Daily Precipitation "
units = "(inches)"
}
trnAlpha = 0.5
#daily mean
p1 = ggplot(df.daily.tmp) +
geom_ribbon(aes(x = yday, ymin = mean_q5, ymax = mean_q95), alpha = 0.25) +
geom_line(aes(x = yday, y = mean_med, color = "red"), size = 1, alpha = 0.8) +
# geom_line(aes(x = yday, y = obs_mean), size = 0.15, alpha = trnAlpha-0.15, linetype = "solid", color = "blue") +
geom_point(aes(x = yday, y = obs_mean), size = 0.3, alpha = trnAlpha, color = "blue") +
scale_colour_manual(values =c('blue'='blue','red'='red', 'grey' = 'grey'), labels = c('Observed','Simulation Median', '95% Confidence')) +
theme_bw() +
theme(axis.title = element_text(face = "bold"),
# text=element_text(size=14),
panel.grid.major = element_line(),
legend.title=element_blank(),
legend.position = "top",
legend.background = element_blank(),
legend.box.background = element_blank(),
legend.key = element_blank()) +
xlab("Day of Year") + ylab(paste0("Mean ", yLabel, units)) +
facet_wrap(~Name, scales = "free")
print(p1)
# p.out = paste0(outDirPlots, "/dailyStats_faceted_temperature.png")
# ggsave(filename = p.out, plot = p1, device = "png", height = 8, width = 8, units = "in")perfComb = rbind(df.daily.pcp.perf, df.daily.tmp.perf)
# write.csv(perfComb, paste0(outDir, "/stations_dailyPerfMetrics.csv"), row.names = F)Here, lower and upper boxplot whiskers are 5th and 95th percentiles, respectively.
i = 1
x = subset(datListProc[[i]][[1]]$sim.pcp, variable == "Trace_1")$value
month = subset(datListProc[[i]][[1]]$sim.pcp, variable == "Trace_1")$month
spells = function(x, month){
df = data.frame(x, month)
df$Flag = NA
n = nrow(df)
#flags (1 = day i pcp is below threshold (0.01 inch), 0 = above threshold)
i = 1
for(i in 1:n){
if(df$x[i] < 0.01){
df$Flag[i] = 1
} else{
df$Flag[i] = 0
}
}
#spell durations ------------
#add dummy 0 at end of data
df[nrow(df)+1,] = NA
df$x[nrow(df)] = 0
df$Flag[nrow(df)] = 0
# tail(df$value, 1) = 0
#dry spells -----
duration.dry = c()
# s.m = c()
e.m.dry = c()
d.i = 0
i = 1
for(i in 1:n){
#if year i and year i + 1 flows are both below threshold, increment duration for spell
if(df$Flag[i] == 1 & df$Flag[i+1] == 1){
d.i = d.i + 1
#if year i is below threshold, but year i + 1 is not, that is the end of the dry spell, finish incrementing and save values, then reset for calculation of the next spell's stats
} else if(df$Flag[i] == 1 & df$Flag[i+1] == 0){
d.i = d.i + 1
e.m.dry = c(e.m.dry, df$month[i])
duration.dry = c(duration.dry, d.i)
d.i = 0
}
}
out.dry = data.frame(duration = duration.dry, month = e.m.dry)
#wet spells -----
duration.wet = c()
# s.m = c()
e.m.wet = c()
w.i = 0
i = 1
for(i in 1:n){
#if year i and year i + 1 flows are both above threshold, increment duration for spell
if(df$Flag[i] == 0 & df$Flag[i+1] == 0){
w.i = w.i + 1
#if year i is above threshold, but year i + 1 is not, that is the end of the wet spell, finish incrementing and save values, then reset for calculation of the next spell's stats
} else if(df$Flag[i] == 0 & df$Flag[i+1] == 1){
w.i = w.i + 1
e.m.wet = c(e.m.wet, df$month[i])
duration.wet = c(duration.wet, w.i)
w.i = 0
}
}
out.wet = data.frame(duration = duration.wet, month = e.m.wet)
return(list(dry = out.dry, wet = out.wet))
}
df.daily.spells = NULL
i = 1
for(i in 1:n){
simDat = datListProc[[i]][[1]]$sim.pcp
obsDat = datListProc[[i]][[1]]$obs.pcp
ID = datListProc[[i]][[2]]
Name = datListProc[[i]][[3]]
j = 1
for(j in 1:nrealz){
trace.j = paste0("Trace_", j)
df.j = subset(simDat, variable == trace.j)
spells.j = spells(x = df.j$value, month = df.j$month)
df.spells.dry = spells.j$dry %>%
group_by(month) %>%
summarise(mean = mean(duration, na.rm = T),
sd = sd(duration, na.rm = T),
max = max(duration, na.rm = T)
) %>%
mutate(Tag = "Dry Spells", ID = ID, Name = Name, Type = "Simulated", Trace = trace.j)
df.spells.wet = spells.j$wet %>%
group_by(month) %>%
summarise(mean = mean(duration, na.rm = T),
sd = sd(duration, na.rm = T),
max = max(duration, na.rm = T)
) %>%
mutate(Tag = "Wet Spells", ID = ID, Name = Name, Type = "Simulated", Trace = trace.j)
df.daily.spells = rbind(df.daily.spells, df.spells.dry, df.spells.wet)
}
spells.o = spells(x = obsDat$prcp, month = obsDat$month)
df.spells.dry.o = spells.o$dry %>%
subset(duration <= 365) %>%
group_by(month) %>%
summarise(mean = mean(duration, na.rm = T),
sd = sd(duration, na.rm = T),
max = max(duration, na.rm = T)
) %>%
mutate(Tag = "Dry Spells", ID = ID, Name = Name, Type = "Observed", Trace = "Observed")
df.spells.wet.o = spells.o$wet %>%
subset(duration <= 365) %>%
group_by(month) %>%
summarise(mean = mean(duration, na.rm = T),
sd = sd(duration, na.rm = T),
max = max(duration, na.rm = T)
) %>%
mutate(Tag = "Wet Spells", ID = ID, Name = Name, Type = "Observed", Trace = "Observed")
df.daily.spells = rbind(df.daily.spells, df.spells.dry.o, df.spells.wet.o)
}
df.daily.spells = as.data.frame(df.daily.spells)
# colnames(df.daily.spells)[4] = "Type"
#
# df.daily.spells[,6:8] = apply(df.daily.spells[,6:8], 2, as.numeric)
#daily mean - wet
p1 = ggplot(data = subset(df.daily.spells,
Type == "Simulated" & Tag == "Wet Spells"),
aes(x = month, y = mean, group = month)) +
stat_boxplot(geom = "errorbar") +
geom_boxplot() +
facet_wrap(~Name, scales = "free") +
scale_colour_manual(values=c('blue'='blue'), labels = c('Observed')) +
theme_bw() +
theme(axis.title = element_text(face = "bold"),
# text=element_text(size=14),
panel.grid.major = element_line(),
legend.title=element_blank(),
legend.position = "right",
legend.background = element_blank(),
legend.box.background = element_blank(),
) +
xlab("Month") +
ylab("Average Wet Spell Length (days)") +
labs(title = "Wet Spell - Mean") +
scale_x_continuous(labels = 1:12, breaks = 1:12)
p1 = p1 + geom_point(data = subset(df.daily.spells,
Type == "Observed" & Tag == "Wet Spells"),
aes(x = month, y = mean, group = month),
color = "blue", alpha = 0.7,
shape = 4, size = 2, stroke = 1.5,
show.legend = T)
print(p1)
# p.out = paste0(outDirPlots, "/meanWetSpellLengths.png")
# ggsave(filename = p.out, plot = p1, device = "png", height = 8, width = 8, units = "in")
#daily mean - dry
p1 = ggplot(data = subset(df.daily.spells,
Type == "Simulated" & Tag == "Dry Spells"),
aes(x = month, y = mean, group = month)) +
stat_boxplot(geom = "errorbar") +
geom_boxplot() +
facet_wrap(~Name, scales = "free") +
scale_colour_manual(values=c('blue'='blue'), labels = c('Observed')) +
theme_bw() +
theme(axis.title = element_text(face = "bold"),
# text=element_text(size=14),
panel.grid.major = element_line(),
legend.title=element_blank(),
legend.position = "right",
legend.background = element_blank(),
legend.box.background = element_blank(),
) +
xlab("Month") +
ylab("Average Dry Spell Length (days)") +
labs(title = "Dry Spell - Mean") +
scale_x_continuous(labels = 1:12, breaks = 1:12)
p1 = p1 + geom_point(data = subset(df.daily.spells,
Type == "Observed" & Tag == "Dry Spells"),
aes(x = month, y = mean, group = month),
color = "blue", alpha = 0.7,
shape = 4, size = 2, stroke = 1.5,
show.legend = T)
print(p1)
# p.out = paste0(outDirPlots, "/meanDrySpellLengths.png")
# ggsave(filename = p.out, plot = p1, device = "png", height = 8, width = 8, units = "in")
#daily sd - wet
p1 = ggplot(data = subset(df.daily.spells,
Type == "Simulated" & Tag == "Wet Spells"),
aes(x = month, y = sd, group = month)) +
stat_boxplot(geom = "errorbar") +
geom_boxplot() +
facet_wrap(~Name, scales = "free") +
scale_colour_manual(values=c('blue'='blue'), labels = c('Observed')) +
theme_bw() +
theme(axis.title = element_text(face = "bold"),
# text=element_text(size=14),
panel.grid.major = element_line(),
legend.title=element_blank(),
legend.position = "right",
legend.background = element_blank(),
legend.box.background = element_blank(),
) +
xlab("Month") +
ylab("Std. Dev. of Wet Spell Length (days)") +
labs(title = "Wet Spell - Standard Deviation") +
scale_x_continuous(labels = 1:12, breaks = 1:12)
p1 = p1 + geom_point(data = subset(df.daily.spells,
Type == "Observed" & Tag == "Wet Spells"),
aes(x = month, y = sd, group = month),
color = "blue", alpha = 0.7,
shape = 4, size = 2, stroke = 1.5,
show.legend = T)
print(p1)
# p.out = paste0(outDirPlots, "/sdWetSpellLengths.png")
# ggsave(filename = p.out, plot = p1, device = "png", height = 8, width = 8, units = "in")
#daily sd
p1 = ggplot(data = subset(df.daily.spells,
Type == "Simulated" & Tag == "Dry Spells"),
aes(x = month, y = sd, group = month)) +
stat_boxplot(geom = "errorbar") +
geom_boxplot() +
facet_wrap(~Name, scales = "free") +
scale_colour_manual(values=c('blue'='blue'), labels = c('Observed')) +
theme_bw() +
theme(axis.title = element_text(face = "bold"),
# text=element_text(size=14),
panel.grid.major = element_line(),
legend.title=element_blank(),
legend.position = "right",
legend.background = element_blank(),
legend.box.background = element_blank(),
) +
xlab("Month") +
ylab("Std. Dev. of Dry Spell Length (days)") +
labs(title = "Dry Spell - Standard Deviation") +
scale_x_continuous(labels = 1:12, breaks = 1:12)
p1 = p1 + geom_point(data = subset(df.daily.spells,
Type == "Observed" & Tag == "Dry Spells"),
aes(x = month, y = sd, group = month),
color = "blue", alpha = 0.7,
shape = 4, size = 2, stroke = 1.5,
show.legend = T)
print(p1)
# p.out = paste0(outDirPlots, "/sdDrySpellLengths.png")
# ggsave(filename = p.out, plot = p1, device = "png", height = 8, width = 8, units = "in")
#daily max - wet
p1 = ggplot(data = subset(df.daily.spells,
Type == "Simulated" & Tag == "Wet Spells"),
aes(x = month, y = max, group = month)) +
stat_boxplot(geom = "errorbar") +
geom_boxplot() +
facet_wrap(~Name, scales = "free") +
scale_colour_manual(values=c('blue'='blue'), labels = c('Observed')) +
theme_bw() +
theme(axis.title = element_text(face = "bold"),
# text=element_text(size=14),
panel.grid.major = element_line(),
legend.title=element_blank(),
legend.position = "right",
legend.background = element_blank(),
legend.box.background = element_blank(),
) +
xlab("Month") +
ylab("Maximum Wet Spell Length (days)") +
labs(title = "Wet Spell - Maximum") +
scale_x_continuous(labels = 1:12, breaks = 1:12)
p1 = p1 + geom_point(data = subset(df.daily.spells,
Type == "Observed" & Tag == "Wet Spells"),
aes(x = month, y = max, group = month),
color = "blue", alpha = 0.7,
shape = 4, size = 2, stroke = 1.5,
show.legend = T)
print(p1)
# p.out = paste0(outDirPlots, "/maxWetSpellLengths.png")
# ggsave(filename = p.out, plot = p1, device = "png", height = 8, width = 8, units = "in")
#daily sd
p1 = ggplot(data = subset(df.daily.spells,
Type == "Simulated" & Tag == "Dry Spells"),
aes(x = month, y = max, group = month)) +
stat_boxplot(geom = "errorbar") +
geom_boxplot() +
facet_wrap(~Name, scales = "free") +
scale_colour_manual(values=c('blue'='blue'), labels = c('Observed')) +
theme_bw() +
theme(axis.title = element_text(face = "bold"),
# text=element_text(size=14),
panel.grid.major = element_line(),
legend.title=element_blank(),
legend.position = "right",
legend.background = element_blank(),
legend.box.background = element_blank(),
) +
xlab("Month") +
ylab("Maximum Dry Spell Length (days)") +
labs(title = "Dry Spell - Maximum") +
scale_x_continuous(labels = 1:12, breaks = 1:12)
p1 = p1 + geom_point(data = subset(df.daily.spells,
Type == "Observed" & Tag == "Dry Spells"),
aes(x = month, y = max, group = month),
color = "blue", alpha = 0.7,
shape = 4, size = 2, stroke = 1.5,
show.legend = T)
print(p1)
# p.out = paste0(outDirPlots, "/maxDrySpellLengths.png")
# ggsave(filename = p.out, plot = p1, device = "png", height = 8, width = 8, units = "in")The weather simulations use a 366-day per year framework in order to handle leap years. During leap years, all 366 days will have precipitation and temperature values (i.e., February 29th exists and contains data), but during non-leap years February 29th does not exist and a row of NULL values is added after December 31st in order to maintain the same length between leap years and non-leap years. Other datasets and algorithms use various approaches to handle leap years, such as avoiding leap years altogether, using a 360-day year, etc.
Because leap years are acceptable in the wxgenR
algorithm, it is possible (but unlikely) to have two or more leap years
in a row in the weather simulations since years are sampled at
random.
Please report any bugs or issues to either sgangopadhyay@usbr.gov or dwoodson@usbr.gov
For more details and examples, including analysis of the dataset used in this vignette, see the following works:
Bearup, L., Gangopadhyay, S., & Mikkelson, K. (2021). Hydroclimate Analysis Lower Santa Cruz River Basin Study (Technical Memorandum No ENV-2020-056). Bureau of Reclamation. <https://www.usbr.gov/lc/phoenix/programs/lscrbasin/LSCRBStudy.html>
Gangopadhyay, S., Bearup, L. A., Verdin, A., Pruitt, T., Halper, E., & Shamir, E. (2019, December 1). A collaborative stochastic weather generator for climate impacts assessment in the Lower Santa Cruz River Basin, Arizona. Fall Meeting 2019, American Geophysical Union. <https://ui.adsabs.harvard.edu/abs/2019AGUFMGC41G1267G>
Rajagopalan, B., Lall, U., and Tarboton, D. G.: Nonhomogeneous Markov Model for Daily Precipitation, Journal of Hydrologic Engineering, 1, 33–40, <https://doi.org/10.1061/(ASCE)1084-0699(1996)1:1(33)>, 1996.
Verdin, A., Rajagopalan, B., Kleiber, W., and Katz, R. W.: Coupled stochastic weather generation using spatial and generalized linear models, Stoch Environ Res Risk Assess, 29, 347–356, <https://doi.org/10.1007/s00477-014-0911-6>, 2015.
Verdin, A., Rajagopalan, B., Kleiber, W., Podestá, G., and Bert, F.: A conditional stochastic weather generator for seasonal to multi-decadal simulations, Journal of Hydrology, 556, 835–846, <https://doi.org/10.1016/j.jhydrol.2015.12.036>, 2018.