gdverse provides the sesu_opgd() and
sesu_gozh() function to support the selection of optimal
spatial analysis scales which based on OPGD and
GOZH respectively. Please refer to the help
documentation of the corresponding function for more details.
Here, we use FVC raster data as an example to demonstrate the optimal spatial analysis scale selection function in gdverse.
First, we construct FVC data under different spatial units using the original data.
library(terra)
library(tidyverse)
library(gdverse)
fvcpath = "https://github.com/SpatLyu/rdevdata/raw/main/FVC.tif"
fvc = terra::rast(paste0("/vsicurl/",fvcpath))
fvc
## class       : SpatRaster 
## dimensions  : 418, 568, 13  (nrow, ncol, nlyr)
## resolution  : 1000, 1000  (x, y)
## extent      : -92742.16, 475257.8, 3591385, 4009385  (xmin, xmax, ymin, ymax)
## coord. ref. : Asia_North_Albers_Equal_Area_Conic 
## source      : FVC.tif 
## names       :       fvc,   premax,   premin,   presum,    tmpmax,     tmpmin, ... 
## min values  : 0.1363270, 109.8619,  2.00000, 3783.904,  9.289694, -11.971293, ... 
## max values  : 0.9596695, 249.9284, 82.74928, 8549.112, 26.781870,   1.322163, ...The original data resolution is 1000m, and then we
construct the data under 2000-10000 m spatial units with
1000 spatial unit interval.
su = seq(1000,10000,by = 1000)
fvc1000 = tibble::as_tibble(terra::as.data.frame(fvc,na.rm = T))
fvc_other = 2:10 %>%
  purrr::map(\(.x) terra::aggregate(fvc,fact=.x ,fun="mean") %>%
               terra::as.data.frame(na.rm = T) %>%
               tibble::as_tibble())
fvc = c(list(fvc1000),fvc_other)
str(fvc)
## List of 10
##  $ : tibble [136,243 × 13] (S3: tbl_df/tbl/data.frame)
##   ..$ fvc   : num [1:136243] 0.198 0.193 0.192 0.189 0.208 ...
##   ..$ premax: num [1:136243] 163 161 160 159 164 ...
##   ..$ premin: num [1:136243] 7.95 6.8 5.24 5 9.98 ...
##   ..$ presum: num [1:136243] 3956 3892 3842 3808 4051 ...
##   ..$ tmpmax: num [1:136243] 20.8 20.7 20.9 21.1 20.6 ...
##   ..$ tmpmin: num [1:136243] -7.53 -7.55 -7.48 -7.39 -7.59 ...
##   ..$ tmpavg: num [1:136243] 8.05 8.02 8.15 8.35 7.97 ...
##   ..$ pop   : num [1:136243] 1.903 1.203 0.547 0.542 10.392 ...
##   ..$ ntl   : num [1:136243] 6.6 4.91 3.75 3.99 7.1 ...
##   ..$ lulc  : num [1:136243] 10 10 10 10 10 10 10 10 10 10 ...
##   ..$ elev  : num [1:136243] 1758 1754 1722 1672 1780 ...
##   ..$ slope : num [1:136243] 2.65 3.45 3.96 2.9 1.94 ...
##   ..$ aspect: num [1:136243] 176.4 169.6 138.5 110.9 99.5 ...
##  $ : tibble [33,722 × 13] (S3: tbl_df/tbl/data.frame)
##   ..$ fvc   : num [1:33722] 0.195 0.184 0.157 0.204 0.208 ...
##   ..$ premax: num [1:33722] 162 159 167 165 165 ...
##   ..$ premin: num [1:33722] 7.37 5.14 4.21 10.98 9.8 ...
##   ..$ presum: num [1:33722] 3935 3799 3975 4134 4089 ...
##   ..$ tmpmax: num [1:33722] 20.9 21.3 21.1 20.4 20.9 ...
##   ..$ tmpmin: num [1:33722] -7.39 -7.21 -7.3 -7.62 -7.33 ...
##   ..$ tmpavg: num [1:33722] 8.17 8.5 8.49 7.78 8.2 ...
##   ..$ pop   : num [1:33722] 18.69 0.91 8.94 10.31 6.46 ...
##   ..$ ntl   : num [1:33722] 6.15 4.32 2.14 4.64 6.79 ...
##   ..$ lulc  : num [1:33722] 10 10 10 10 10 10 10 10 10 10 ...
##   ..$ elev  : num [1:33722] 1720 1638 1662 1835 1717 ...
##   ..$ slope : num [1:33722] 3.89 2.63 3.06 3.37 3.93 ...
##   ..$ aspect: num [1:33722] 114 158 136 102 120 ...
##  $ : tibble [14,840 × 13] (S3: tbl_df/tbl/data.frame)
##   ..$ fvc   : num [1:14840] 0.205 0.197 0.175 0.163 0.21 ...
##   ..$ premax: num [1:14840] 165 161 160 162 165 ...
##   ..$ premin: num [1:14840] 10.35 6.02 4.97 4.48 11.04 ...
##   ..$ presum: num [1:14840] 4098 3908 3848 3910 4131 ...
##   ..$ tmpmax: num [1:14840] 20.7 21.2 21.5 21.3 20.4 ...
##   ..$ tmpmin: num [1:14840] -7.46 -7.19 -7.07 -7.24 -7.52 ...
##   ..$ tmpavg: num [1:14840] 8.04 8.44 8.67 8.52 7.84 ...
##   ..$ pop   : num [1:14840] 12.33 13.78 4.59 6.52 2.97 ...
##   ..$ ntl   : num [1:14840] 6.37 7.79 7.23 9.96 4.59 ...
##   ..$ lulc  : num [1:14840] 10 10 10 10 10 10 10 10 10 10 ...
##   ..$ elev  : num [1:14840] 1762 1654 1600 1649 1805 ...
##   ..$ slope : num [1:14840] 3.41 3.19 2.61 3.06 3.76 ...
##   ..$ aspect: num [1:14840] 126 130 179 201 146 ...
##  $ : tibble [8,268 × 13] (S3: tbl_df/tbl/data.frame)
##   ..$ fvc   : num [1:8268] 0.2 0.174 0.175 0.182 0.193 ...
##   ..$ premax: num [1:8268] 164 161 165 171 164 ...
##   ..$ premin: num [1:8268] 7.57 5.37 6.07 5.78 9.32 ...
##   ..$ presum: num [1:8268] 4022 3896 4026 4177 4072 ...
##   ..$ tmpmax: num [1:8268] 21 21.6 21.3 20.8 21 ...
##   ..$ tmpmin: num [1:8268] -7.22 -6.96 -7.15 -7.46 -7.15 ...
##   ..$ tmpavg: num [1:8268] 8.36 8.81 8.57 8.19 8.35 ...
##   ..$ pop   : num [1:8268] 5.82 15.87 20.4 8.66 1.55 ...
##   ..$ ntl   : num [1:8268] 8.33 8.39 13.18 2.69 11 ...
##   ..$ lulc  : num [1:8268] 10 10 10 10 10 10 10 10 10 10 ...
##   ..$ elev  : num [1:8268] 1684 1567 1642 1690 1693 ...
##   ..$ slope : num [1:8268] 3.43 2.13 3.48 3.22 3.56 ...
##   ..$ aspect: num [1:8268] 115 159 224 207 133 ...
##  $ : tibble [5,240 × 13] (S3: tbl_df/tbl/data.frame)
##   ..$ fvc   : num [1:5240] 0.188 0.162 0.168 0.186 0.189 ...
##   ..$ premax: num [1:5240] 163 162 168 174 164 ...
##   ..$ premin: num [1:5240] 6.86 5.23 4.15 5.99 7.86 ...
##   ..$ presum: num [1:5240] 3992 3922 4040 4254 4047 ...
##   ..$ tmpmax: num [1:5240] 21.2 21.7 21.2 20.8 21.2 ...
##   ..$ tmpmin: num [1:5240] -7.09 -6.9 -7.22 -7.42 -7 ...
##   ..$ tmpavg: num [1:5240] 8.54 8.92 8.53 8.21 8.58 ...
##   ..$ pop   : num [1:5240] 5.64 23.14 9.73 6.84 2.36 ...
##   ..$ ntl   : num [1:5240] 9.1 10.45 5.58 2.89 12.3 ...
##   ..$ lulc  : num [1:5240] 10 10 10 10 10 10 10 10 10 10 ...
##   ..$ elev  : num [1:5240] 1645 1539 1611 1677 1643 ...
##   ..$ slope : num [1:5240] 2.96 1.86 3.19 3.32 2.79 ...
##   ..$ aspect: num [1:5240] 122 174 192 213 132 ...
##  $ : tibble [3,607 × 13] (S3: tbl_df/tbl/data.frame)
##   ..$ fvc   : num [1:3607] 0.196 0.169 0.165 0.174 0.188 ...
##   ..$ premax: num [1:3607] 165 161 165 168 175 ...
##   ..$ premin: num [1:3607] 9.19 5.07 5.89 4.14 5.51 ...
##   ..$ presum: num [1:3607] 4081 3885 4035 4064 4281 ...
##   ..$ tmpmax: num [1:3607] 20.9 21.7 21.6 21.3 20.7 ...
##   ..$ tmpmin: num [1:3607] -7.2 -6.91 -6.99 -7.17 -7.39 ...
##   ..$ tmpavg: num [1:3607] 8.3 8.86 8.79 8.63 8.23 ...
##   ..$ pop   : num [1:3607] 2.69 11.89 27.15 12.59 4.31 ...
##   ..$ ntl   : num [1:3607] 8.82 9.36 12.72 6.77 2.09 ...
##   ..$ lulc  : num [1:3607] 10 10 10 10 10 10 10 10 10 10 ...
##   ..$ elev  : num [1:3607] 1705 1557 1577 1585 1680 ...
##   ..$ slope : num [1:3607] 3.37 1.92 2.69 2.89 3.33 ...
##   ..$ aspect: num [1:3607] 141 130 200 201 218 ...
##  $ : tibble [2,634 × 13] (S3: tbl_df/tbl/data.frame)
##   ..$ fvc   : num [1:2634] 0.172 0.159 0.177 0.179 0.208 ...
##   ..$ premax: num [1:2634] 161 163 166 170 165 ...
##   ..$ premin: num [1:2634] 5.53 4.98 4.19 4.17 8.3 ...
##   ..$ presum: num [1:2634] 3924 3969 4003 4115 4133 ...
##   ..$ tmpmax: num [1:2634] 21.6 21.8 21.2 21.3 21.1 ...
##   ..$ tmpmin: num [1:2634] -6.91 -6.9 -7.15 -7.17 -7.06 ...
##   ..$ tmpavg: num [1:2634] 8.84 8.96 8.52 8.64 8.46 ...
##   ..$ pop   : num [1:2634] 4.79 23.35 33.75 6.38 8.72 ...
##   ..$ ntl   : num [1:2634] 9.65 11.31 11.85 7.32 5.76 ...
##   ..$ lulc  : num [1:2634] 10 10 10 10 10 10 10 10 10 10 ...
##   ..$ elev  : num [1:2634] 1568 1528 1632 1585 1670 ...
##   ..$ slope : num [1:2634] 1.92 2.08 3.24 2.86 2.62 ...
##   ..$ aspect: num [1:2634] 129 181 169 222 164 ...
##  $ : tibble [2,002 × 13] (S3: tbl_df/tbl/data.frame)
##   ..$ fvc   : num [1:2002] 0.169 0.162 0.176 0.184 0.203 ...
##   ..$ premax: num [1:2002] 162 163 167 172 165 ...
##   ..$ premin: num [1:2002] 5.12 4.14 3.82 4.05 8.5 ...
##   ..$ presum: num [1:2002] 3957 3949 4022 4170 4145 ...
##   ..$ tmpmax: num [1:2002] 21.6 21.7 21.4 21.2 20.9 ...
##   ..$ tmpmin: num [1:2002] -6.92 -6.9 -7.08 -7.21 -7.09 ...
##   ..$ tmpavg: num [1:2002] 8.86 8.96 8.68 8.57 8.32 ...
##   ..$ pop   : num [1:2002] 5.81 15.22 26.95 6.31 11.41 ...
##   ..$ ntl   : num [1:2002] 9.42 11.06 12.13 6.12 3.6 ...
##   ..$ lulc  : num [1:2002] 10 10 10 10 10 10 10 10 10 10 ...
##   ..$ elev  : num [1:2002] 1560 1524 1584 1605 1708 ...
##   ..$ slope : num [1:2002] 2.16 2.37 2.9 3.02 2.77 ...
##   ..$ aspect: num [1:2002] 129 194 172 211 161 ...
##  $ : tibble [1,561 × 13] (S3: tbl_df/tbl/data.frame)
##   ..$ fvc   : num [1:1561] 0.175 0.169 0.179 0.196 0.198 ...
##   ..$ premax: num [1:1561] 163 163 168 164 166 ...
##   ..$ premin: num [1:1561] 5.42 3.72 3.66 8.46 5.79 ...
##   ..$ presum: num [1:1561] 4014 3950 4050 4134 4138 ...
##   ..$ tmpmax: num [1:1561] 21.5 21.7 21.4 20.8 21.4 ...
##   ..$ tmpmin: num [1:1561] -6.97 -6.91 -7.05 -7.08 -6.82 ...
##   ..$ tmpavg: num [1:1561] 8.78 8.95 8.76 8.28 8.75 ...
##   ..$ pop   : num [1:1561] 4.5 17.55 15.72 12.63 7.42 ...
##   ..$ ntl   : num [1:1561] 8.93 10.71 10.93 2.97 3.35 ...
##   ..$ lulc  : num [1:1561] 10 10 10 10 10 10 10 10 10 10 ...
##   ..$ elev  : num [1:1561] 1581 1524 1563 1723 1599 ...
##   ..$ slope : num [1:1561] 2.3 2.44 2.91 2.8 2.83 ...
##   ..$ aspect: num [1:1561] 137 191 175 177 150 ...
##  $ : tibble [1,253 × 13] (S3: tbl_df/tbl/data.frame)
##   ..$ fvc   : num [1:1253] 0.177 0.177 0.178 0.186 0.19 ...
##   ..$ premax: num [1:1253] 164 164 169 160 162 ...
##   ..$ premin: num [1:1253] 5.22 3.56 3.34 10.52 7.39 ...
##   ..$ presum: num [1:1253] 4046 3990 4098 4058 4069 ...
##   ..$ tmpmax: num [1:1253] 21.5 21.6 21.5 21.2 21 ...
##   ..$ tmpmin: num [1:1253] -6.98 -6.96 -7.07 -6.86 -6.98 ...
##   ..$ tmpavg: num [1:1253] 8.77 8.86 8.79 8.68 8.4 ...
##   ..$ pop   : num [1:1253] 6.1 18.38 8.83 9.96 8.91 ...
##   ..$ ntl   : num [1:1253] 7.901 11.324 9.294 0.611 2.963 ...
##   ..$ lulc  : num [1:1253] 10 10 10 10 10 10 10 10 10 10 ...
##   ..$ elev  : num [1:1253] 1581 1547 1552 1640 1692 ...
##   ..$ slope : num [1:1253] 2.41 2.83 3.04 2.29 2.85 ...
##   ..$ aspect: num [1:1253] 130 182 211 194 163 ...discvar = names(select(fvc1000,-c(fvc,lulc)))
g1 = sesu_opgd(fvc ~ ., data = fvc,su = su,discvar = discvar,cores = 6)
g1
##    Size Effect Of Spatial Units Using OPGD Model   
##  ***    Optimal Spatial Unit: 8000
##  Spatial Unit: 1000 
## 
## | variable | Q-statistic | P-value  |
## |:--------:|:-----------:|:--------:|
## |  presum  | 0.629224208 | 3.28e-10 |
## |   lulc   | 0.553328610 | 9.11e-10 |
## |  premin  | 0.418432585 | 9.07e-10 |
## |  tmpmin  | 0.388351007 | 2.38e-10 |
## |  tmpmax  | 0.202221646 | 3.41e-10 |
## |   elev   | 0.201323643 | 4.71e-10 |
## |  slope   | 0.191360672 | 4.72e-10 |
## |  tmpavg  | 0.180958844 | 9.66e-10 |
## |   pop    | 0.162710129 | 1.22e-10 |
## |  premax  | 0.123992358 | 2.18e-10 |
## |   ntl    | 0.015565222 | 5.63e-10 |
## |  aspect  | 0.006274855 | 3.51e-10 |
## 
##  Spatial Unit: 2000 
## 
## | variable | Q-statistic | P-value  |
## |:--------:|:-----------:|:--------:|
## |  presum  | 0.63312876  | 3.11e-10 |
## |   lulc   | 0.58349550  | 8.71e-10 |
## |  premin  | 0.42455258  | 9.24e-10 |
## |  tmpmin  | 0.39556928  | 4.95e-10 |
## |  tmpmax  | 0.21303636  | 8.76e-10 |
## |   elev   | 0.20843509  | 6.73e-10 |
## |  slope   | 0.20649212  | 7.76e-10 |
## |  tmpavg  | 0.19219842  | 6.67e-10 |
## |   pop    | 0.16400743  | 1.32e-10 |
## |  premax  | 0.12681440  | 5.15e-10 |
## |   ntl    | 0.01517344  | 4.57e-10 |
## |  aspect  | 0.00842302  | 3.92e-10 |
## 
##  Spatial Unit: 3000 
## 
## | variable | Q-statistic | P-value  |
## |:--------:|:-----------:|:--------:|
## |  presum  | 0.64197109  | 7.48e-10 |
## |   lulc   | 0.62197064  | 7.93e-10 |
## |  premin  | 0.42942177  | 7.84e-10 |
## |  tmpmin  | 0.40301113  | 6.18e-10 |
## |  slope   | 0.21920354  | 6.23e-10 |
## |  tmpmax  | 0.21913037  | 3.22e-10 |
## |   elev   | 0.21195601  | 4.86e-10 |
## |  tmpavg  | 0.19120663  | 2.22e-10 |
## |   pop    | 0.15680652  | 8.30e-11 |
## |  premax  | 0.13003298  | 6.23e-10 |
## |   ntl    | 0.01491232  | 7.09e-10 |
## |  aspect  | 0.01072380  | 8.94e-10 |
## 
##  Spatial Unit: 4000 
## 
## | variable | Q-statistic |   P-value    |
## |:--------:|:-----------:|:------------:|
## |  presum  | 0.64524739  | 3.170000e-10 |
## |   lulc   | 0.64389956  | 8.290000e-10 |
## |  premin  | 0.43796195  | 9.050000e-10 |
## |  tmpmin  | 0.41204303  | 8.050000e-10 |
## |  slope   | 0.22229402  | 4.180000e-10 |
## |  tmpmax  | 0.22073865  | 6.470000e-10 |
## |   elev   | 0.21988510  | 2.480000e-10 |
## |  tmpavg  | 0.20763621  | 7.420000e-10 |
## |   pop    | 0.17634834  | 9.910000e-10 |
## |  premax  | 0.13166579  | 5.530000e-10 |
## |   ntl    | 0.01477475  | 7.090000e-09 |
## |  aspect  | 0.01154072  | 1.282143e-03 |
## 
##  Spatial Unit: 5000 
## 
## | variable | Q-statistic |   P-value    |
## |:--------:|:-----------:|:------------:|
## |   lulc   |  0.6597260  | 8.780000e-10 |
## |  presum  |  0.6541838  | 4.580000e-10 |
## |  premin  |  0.4373717  | 3.480000e-10 |
## |  tmpmin  |  0.4177628  | 6.000000e-10 |
## |  tmpmax  |  0.2343576  | 6.050000e-10 |
## |  slope   |  0.2267634  | 9.450000e-10 |
## |   elev   |  0.2240745  | 2.460000e-10 |
## |  tmpavg  |  0.2116508  | 2.750000e-10 |
## |   pop    |  0.1726795  | 9.350000e-10 |
## |  premax  |  0.1349719  | 5.030000e-10 |
## |   ntl    |  0.0154460  | 2.950835e-02 |
## |  aspect  |  0.0153570  | 4.128000e-09 |
## 
##  Spatial Unit: 6000 
## 
## | variable | Q-statistic |   P-value    |
## |:--------:|:-----------:|:------------:|
## |   lulc   | 0.67492096  | 8.910000e-10 |
## |  presum  | 0.65750566  | 4.290000e-10 |
## |  premin  | 0.44335801  | 2.580000e-10 |
## |  tmpmin  | 0.43163297  | 1.310000e-10 |
## |  tmpmax  | 0.24076863  | 6.710000e-10 |
## |   elev   | 0.23852761  | 3.110000e-10 |
## |  slope   | 0.22697985  | 4.060000e-10 |
## |  tmpavg  | 0.21342297  | 4.930000e-10 |
## |   pop    | 0.18423517  | 4.050000e-10 |
## |  premax  | 0.13713818  | 7.030000e-10 |
## |  aspect  | 0.02255081  | 3.779087e-06 |
## |   ntl    | 0.01603905  | 6.398028e-01 |
## 
##  Spatial Unit: 7000 
## 
## | variable | Q-statistic |   P-value    |
## |:--------:|:-----------:|:------------:|
## |   lulc   | 0.69056548  | 8.460000e-10 |
## |  presum  | 0.65598539  | 8.960000e-10 |
## |  premin  | 0.45514450  | 7.130000e-10 |
## |  tmpmin  | 0.42974033  | 3.750000e-10 |
## |  tmpmax  | 0.24005942  | 3.670000e-10 |
## |   elev   | 0.23804435  | 4.600000e-10 |
## |  slope   | 0.22945970  | 9.720000e-10 |
## |  tmpavg  | 0.21953445  | 6.520000e-10 |
## |   pop    | 0.20126959  | 4.320000e-10 |
## |  premax  | 0.13854986  | 3.910000e-10 |
## |  aspect  | 0.02290143  | 3.512711e-01 |
## |   ntl    | 0.01658040  | 8.042073e-01 |
## 
##  Spatial Unit: 8000 
## 
## | variable | Q-statistic |   P-value    |
## |:--------:|:-----------:|:------------:|
## |   lulc   | 0.69775844  | 9.850000e-10 |
## |  presum  | 0.65944760  | 7.100000e-10 |
## |  premin  | 0.45756622  | 2.730000e-10 |
## |  tmpmin  | 0.43917313  | 4.880000e-10 |
## |  tmpmax  | 0.25085786  | 4.230000e-10 |
## |   elev   | 0.25050941  | 8.020000e-10 |
## |  tmpavg  | 0.23209570  | 2.550000e-10 |
## |  slope   | 0.23133961  | 9.130000e-10 |
## |   pop    | 0.16938255  | 3.810000e-10 |
## |  premax  | 0.13691004  | 1.970000e-10 |
## |  aspect  | 0.02574063  | 3.704521e-01 |
## |   ntl    | 0.01944793  | 1.077426e-06 |
## 
##  Spatial Unit: 9000 
## 
## | variable | Q-statistic |   P-value    |
## |:--------:|:-----------:|:------------:|
## |   lulc   | 0.70417030  | 9.610000e-10 |
## |  presum  | 0.66087241  | 2.580000e-10 |
## |  premin  | 0.45670286  | 6.080000e-10 |
## |  tmpmin  | 0.44659384  | 1.440000e-10 |
## |   elev   | 0.26455177  | 1.130000e-10 |
## |  tmpavg  | 0.25275409  | 2.420000e-10 |
## |  tmpmax  | 0.22761570  | 6.210000e-10 |
## |  slope   | 0.22627611  | 8.230000e-10 |
## |   pop    | 0.19692348  | 7.170000e-10 |
## |  premax  | 0.14497262  | 5.900000e-10 |
## |  aspect  | 0.02846294  | 6.337773e-01 |
## |   ntl    | 0.01523619  | 2.710474e-04 |
## 
##  Spatial Unit: 10000 
## 
## | variable | Q-statistic |   P-value    |
## |:--------:|:-----------:|:------------:|
## |   lulc   | 0.69927128  | 2.871432e-05 |
## |  presum  | 0.66343981  | 4.000000e-10 |
## |  premin  | 0.46911366  | 2.190000e-10 |
## |  tmpmin  | 0.44824499  | 2.090000e-10 |
## |   elev   | 0.25805475  | 8.600000e-11 |
## |  tmpmax  | 0.25711048  | 2.570000e-10 |
## |  tmpavg  | 0.23844293  | 2.680000e-10 |
## |  slope   | 0.22356559  | 9.870000e-10 |
## |   pop    | 0.21293610  | 9.630000e-10 |
## |  premax  | 0.13851805  | 1.160000e-10 |
## |  aspect  | 0.04068517  | 6.566287e-01 |
## |   ntl    | 0.02368926  | 9.871909e-01 |
plot(g1)g2 = sesu_gozh(fvc ~ ., data = fvc, su = su,
               cores = 6, increase_rate = 0.005)
g2
##    Size Effect Of Spatial Units Using GOZH Model   
##  ***        Optimal Spatial Unit: 4000
##  Spatial Unit: 1000 
## 
## |   variable    | Q-statistic | P-value  |
## |:-------------:|:-----------:|:--------:|
## | TotalVariable |  0.7866938  | 3.33e-10 |
## 
##  Spatial Unit: 2000 
## 
## |   variable    | Q-statistic | P-value  |
## |:-------------:|:-----------:|:--------:|
## | TotalVariable |  0.7975525  | 4.96e-10 |
## 
##  Spatial Unit: 3000 
## 
## |   variable    | Q-statistic | P-value  |
## |:-------------:|:-----------:|:--------:|
## | TotalVariable |  0.8038107  | 9.51e-10 |
## 
##  Spatial Unit: 4000 
## 
## |   variable    | Q-statistic | P-value  |
## |:-------------:|:-----------:|:--------:|
## | TotalVariable |  0.8120727  | 7.54e-10 |
## 
##  Spatial Unit: 5000 
## 
## |   variable    | Q-statistic | P-value  |
## |:-------------:|:-----------:|:--------:|
## | TotalVariable |  0.8051771  | 7.15e-10 |
## 
##  Spatial Unit: 6000 
## 
## |   variable    | Q-statistic | P-value  |
## |:-------------:|:-----------:|:--------:|
## | TotalVariable |  0.8285607  | 6.23e-10 |
## 
##  Spatial Unit: 7000 
## 
## |   variable    | Q-statistic | P-value  |
## |:-------------:|:-----------:|:--------:|
## | TotalVariable |  0.8356357  | 7.91e-10 |
## 
##  Spatial Unit: 8000 
## 
## |   variable    | Q-statistic | P-value  |
## |:-------------:|:-----------:|:--------:|
## | TotalVariable |  0.8194033  | 3.28e-10 |
## 
##  Spatial Unit: 9000 
## 
## |   variable    | Q-statistic | P-value  |
## |:-------------:|:-----------:|:--------:|
## | TotalVariable |  0.8494805  | 3.79e-10 |
## 
##  Spatial Unit: 10000 
## 
## |   variable    | Q-statistic | P-value  |
## |:-------------:|:-----------:|:--------:|
## | TotalVariable |  0.8182764  | 3.27e-10 |
plot(g2)You can also use the same strategy as sesu_opgd() (use
the mean of the individual Q statistic for all explanatory variables) in
sesu_gozh() by assign strategy to
1.
g3 = sesu_gozh(fvc ~ ., data = fvc, su = su, cores = 6,
               strategy = 1, increase_rate = 0.005)
g3
##    Size Effect Of Spatial Units Using GOZH Model   
##  ***        Optimal Spatial Unit: 10000
##  Spatial Unit: 1000 
## 
## | variable | Q-statistic | P-value  |
## |:--------:|:-----------:|:--------:|
## |  presum  | 0.61357308  | 2.33e-10 |
## |   lulc   | 0.54039924  | 7.28e-10 |
## |  premin  | 0.43005723  | 2.63e-10 |
## |  tmpmin  | 0.37878995  | 8.57e-10 |
## |   elev   | 0.19589469  | 8.32e-10 |
## |  tmpavg  | 0.19354399  | 6.54e-10 |
## |  tmpmax  | 0.18257181  | 4.90e-10 |
## |   pop    | 0.18188771  | 6.91e-10 |
## |  slope   | 0.18039771  | 3.92e-10 |
## |  premax  | 0.11278088  | 1.60e-10 |
## |   ntl    | 0.01298068  | 1.34e-10 |
## |  aspect  | 0.00000000  |   NaN    |
## 
##  Spatial Unit: 2000 
## 
## | variable | Q-statistic | P-value  |
## |:--------:|:-----------:|:--------:|
## |  presum  | 0.62301279  | 2.66e-10 |
## |   lulc   | 0.55803717  | 8.77e-10 |
## |  premin  | 0.43544867  | 7.00e-10 |
## |  tmpmin  | 0.38618203  | 2.45e-10 |
## |  tmpmax  | 0.21025124  | 2.07e-10 |
## |   elev   | 0.20314330  | 2.78e-10 |
## |  tmpavg  | 0.19914975  | 7.39e-10 |
## |  slope   | 0.19627348  | 7.61e-10 |
## |   pop    | 0.19602997  | 4.70e-10 |
## |  premax  | 0.12512115  | 8.76e-10 |
## |   ntl    | 0.01303962  | 1.61e-10 |
## |  aspect  | 0.00000000  |   NaN    |
## 
##  Spatial Unit: 3000 
## 
## | variable | Q-statistic | P-value  |
## |:--------:|:-----------:|:--------:|
## |  presum  | 0.62786163  | 2.02e-10 |
## |   lulc   | 0.57980350  | 4.66e-10 |
## |  premin  | 0.45295671  | 8.76e-10 |
## |  tmpmin  | 0.39398883  | 4.53e-10 |
## |  tmpmax  | 0.22337707  | 2.02e-10 |
## |  slope   | 0.21773086  | 8.99e-10 |
## |   elev   | 0.21072544  | 7.80e-10 |
## |  tmpavg  | 0.20840028  | 7.53e-10 |
## |   pop    | 0.20403869  | 8.29e-10 |
## |  premax  | 0.12036298  | 1.69e-10 |
## |   ntl    | 0.01254965  | 3.91e-10 |
## |  aspect  | 0.00000000  |   NaN    |
## 
##  Spatial Unit: 4000 
## 
## | variable | Q-statistic | P-value  |
## |:--------:|:-----------:|:--------:|
## |  presum  | 0.63518731  | 5.71e-10 |
## |   lulc   | 0.60101282  | 6.31e-10 |
## |  premin  | 0.44863951  | 5.28e-10 |
## |  tmpmin  | 0.40118790  | 4.14e-10 |
## |  tmpmax  | 0.23847408  | 7.87e-10 |
## |   pop    | 0.22484285  | 5.80e-10 |
## |  slope   | 0.22361153  | 9.25e-10 |
## |   elev   | 0.21891887  | 2.58e-10 |
## |  tmpavg  | 0.21559889  | 3.61e-10 |
## |  premax  | 0.12272873  | 2.12e-10 |
## |   ntl    | 0.01215376  | 2.74e-10 |
## |  aspect  | 0.00000000  |   NaN    |
## 
##  Spatial Unit: 5000 
## 
## | variable | Q-statistic |  P-value  |
## |:--------:|:-----------:|:---------:|
## |  presum  | 0.63722230  | 9.500e-11 |
## |   lulc   | 0.61064956  | 4.800e-10 |
## |  premin  | 0.46576994  | 5.480e-10 |
## |  tmpmin  | 0.41116492  | 2.950e-10 |
## |  tmpmax  | 0.24778090  | 7.310e-10 |
## |  slope   | 0.22861668  | 6.050e-10 |
## |   pop    | 0.22376308  | 3.750e-10 |
## |   elev   | 0.22370908  | 4.670e-10 |
## |  tmpavg  | 0.21883019  | 6.540e-10 |
## |  premax  | 0.12586705  | 1.440e-10 |
## |   ntl    | 0.02364914  | 1.830e-10 |
## |  aspect  | 0.01412962  | 8.938e-09 |
## 
##  Spatial Unit: 6000 
## 
## | variable | Q-statistic |   P-value    |
## |:--------:|:-----------:|:------------:|
## |  presum  | 0.64204895  | 1.520000e-10 |
## |   lulc   | 0.62821539  | 5.160000e-10 |
## |  premin  | 0.46963617  | 7.140000e-10 |
## |  tmpmin  | 0.42078259  | 1.760000e-10 |
## |  tmpmax  | 0.26097547  | 7.450000e-10 |
## |   elev   | 0.24349549  | 2.210000e-10 |
## |  slope   | 0.23674911  | 4.340000e-10 |
## |  tmpavg  | 0.22761345  | 6.460000e-10 |
## |   pop    | 0.21387327  | 6.550000e-10 |
## |  premax  | 0.13886190  | 4.090000e-10 |
## |  aspect  | 0.01965907  | 6.615700e-08 |
## |   ntl    | 0.01281291  | 1.785448e-06 |
## 
##  Spatial Unit: 7000 
## 
## | variable | Q-statistic |   P-value   |
## |:--------:|:-----------:|:-----------:|
## |  presum  | 0.65119059  | 4.91000e-10 |
## |   lulc   | 0.62992351  | 4.00000e-10 |
## |  premin  | 0.46746888  | 7.35000e-10 |
## |  tmpmin  | 0.42352245  | 1.48000e-10 |
## |  tmpmax  | 0.25489327  | 4.11000e-10 |
## |  tmpavg  | 0.24806555  | 5.10000e-10 |
## |   pop    | 0.23833151  | 3.69000e-10 |
## |  slope   | 0.22981037  | 4.83000e-10 |
## |   elev   | 0.22955762  | 2.97000e-10 |
## |  premax  | 0.12914079  | 3.95000e-10 |
## |   ntl    | 0.02573822  | 1.19570e-08 |
## |  aspect  | 0.02273950  | 4.78275e-07 |
## 
##  Spatial Unit: 8000 
## 
## | variable | Q-statistic |   P-value    |
## |:--------:|:-----------:|:------------:|
## |  presum  | 0.65830260  | 1.330000e-10 |
## |   lulc   | 0.62941306  | 5.520000e-10 |
## |  premin  | 0.47958908  | 3.610000e-10 |
## |  tmpmin  | 0.43387026  | 1.270000e-10 |
## |  tmpmax  | 0.27793736  | 3.600000e-10 |
## |   elev   | 0.26007519  | 2.170000e-10 |
## |  tmpavg  | 0.24626023  | 7.420000e-10 |
## |  slope   | 0.23663987  | 4.930000e-10 |
## |   pop    | 0.22200579  | 8.390000e-10 |
## |  premax  | 0.14446913  | 5.440000e-10 |
## |   ntl    | 0.02638165  | 3.322900e-06 |
## |  aspect  | 0.01993728  | 1.770375e-03 |
## 
##  Spatial Unit: 9000 
## 
## | variable | Q-statistic |   P-value    |
## |:--------:|:-----------:|:------------:|
## |  presum  | 0.65739289  | 2.420000e-10 |
## |   lulc   | 0.62688737  | 8.450000e-10 |
## |  premin  | 0.46785117  | 8.610000e-10 |
## |  tmpmin  | 0.44858109  | 9.900000e-11 |
## |   elev   | 0.26629528  | 1.010000e-10 |
## |  tmpavg  | 0.26423186  | 2.540000e-10 |
## |  tmpmax  | 0.24490412  | 2.340000e-10 |
## |  slope   | 0.23372050  | 3.490000e-10 |
## |   pop    | 0.23158655  | 5.630000e-10 |
## |  premax  | 0.15605198  | 5.870000e-10 |
## |   ntl    | 0.02797473  | 1.571733e-04 |
## |  aspect  | 0.02732356  | 3.071476e-04 |
## 
##  Spatial Unit: 10000 
## 
## | variable | Q-statistic |   P-value    |
## |:--------:|:-----------:|:------------:|
## |  presum  | 0.67041293  | 8.870000e-10 |
## |   lulc   | 0.62850681  | 3.530000e-10 |
## |  premin  | 0.48291514  | 5.270000e-10 |
## |  tmpmin  | 0.44485438  | 4.530000e-10 |
## |  tmpmax  | 0.28867471  | 4.140000e-10 |
## |  tmpavg  | 0.28656169  | 5.160000e-10 |
## |   elev   | 0.27080523  | 8.150000e-10 |
## |   pop    | 0.26912522  | 8.240000e-10 |
## |  slope   | 0.22656703  | 8.810000e-10 |
## |  premax  | 0.14956177  | 1.950000e-10 |
## |  aspect  | 0.03267780  | 2.524895e-03 |
## |   ntl    | 0.02332034  | 1.395206e-02 |
plot(g3)As shown above, strategy 2 results in a better trade-off
between spatial unit expressive detail and explanatory power than
strategy 1. So sesu_gozh() defaults to use
strategy 2(using the interactive Q statistic for all
explanatory variables)